화학공학소재연구정보센터
Applied Surface Science, Vol.206, No.1-4, 300-313, 2003
Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite
The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossirigs at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.