화학공학소재연구정보센터
Macromolecular Research, Vol.15, No.6, 498-505, October, 2007
Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization
E-mail:
This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trimethylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.
  1. Hill DE, Lin Y, Rao AM, Allard LF, Sun YP, Macromolecules, 35(25), 9466 (2002)
  2. Zhao B, Hu H, Yu AP, Perea D, Haddon RC, J. Am. Chem. Soc., 127(22), 8197 (2005)
  3. Sabba Y, Thomas EL, Macromolecules, 37(13), 4815 (2004)
  4. Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17, 17 (2005)
  5. Peng HQ, Alemany LB, Margrave JL, Khabashesku VN, J. Am. Chem. Soc., 125(49), 15174 (2003)
  6. Chopra N, Majumder M, Hinds BJ, Adv. Funct. Mater., 15, 858 (2005)
  7. Zhang XF, Sreekumar TV, Liu T, Kumar S, J. Phys. Chem. B, 108(42), 16435 (2004)
  8. Hu H, Zhao B, Itkis ME, Haddon RC, J. Phys. Chem. B, 107(50), 13838 (2003)
  9. Gao JB, Itkis ME, Yu AP, Bekyarova E, Zhao B, Haddon RC, J. Am. Chem. Soc., 127(11), 3847 (2005)
  10. Ham HT, Koo CM, Kim SO, Choi YS, Chung IJ, Macromol. Res., 12(4), 384 (2004)
  11. Zanella R, Basiuk EV, Santiago P, Basiuk VA, Mireles E, Puente-Lee I, Saniger JM, J. Phys. Chem. B, 109(34), 16290 (2005)
  12. Cui JB, Daghlian CP, Gibson UJ, J. Appl. Phys., 98, 044320 (2005)
  13. Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H, Chem. Commun., 2002 (2005)
  14. Unger E, Liebau M, Duesberg GS, Graham AP, Kreupl F, Seidel R, Hoenlein W, Chem. Phys. Lett., 399, 280 (2004)
  15. Landi BJ, Ruf HJ, Worman JJ, Raffaelle RP, J. Phys. Chem. B, 108(44), 17089 (2004)
  16. Qin SH, Qin DQ, Ford WT, Resasco DE, Herrera JE, Macromolecules, 37(3), 752 (2004)
  17. Liu YQ, Yao ZL, Adronov A, Macromolecules, 38(4), 1172 (2005)
  18. Datsyuk V, Guerret-Piecourt C, Dagreou S, Billon L, Dupin JC, Flahaut E, Peigney A, Laurent C, Carbon, 43, 873 (2005)
  19. Zhang W, Yang MJ, J. Mater. Sci., 39(15), 4921 (2004)
  20. Qin SH, Qin DQ, Ford WT, Herrera JE, Resasco DE, Bachilo SM, Weisman RB, Macromolecules, 37(11), 3965 (2004)
  21. Shaffer MSP, Koziol K, Chem. Commun., 2074 (2002)
  22. Huang HM, Liu IC, Chang CY, Tsai HC, Hsu CH, Tsiang RCC, J. Polym. Sci. A: Polym. Chem., 42(22), 5802 (2004)
  23. Kong H, Gao C, Yan DY, Macromolecules, 37(11), 4022 (2004)
  24. Kong H, Gao C, Yan DY, J. Mater. Chem., 14, 1401 (2004)
  25. Xu GY, Wu WT, Wang YS, Pang WM, Zhu QR, Wang PH, You YZ, Polymer, 47(16), 5909 (2006)
  26. Cui H, Wang WP, You YZ, Liu CH, Wang PH, Polymer, 45(26), 8717 (2004)
  27. Lee YW, Kang SM, Yoon KR, Chi YS, Choi IS, Hong SP, Yu BC, Paik HJ, Yun WS, Macromol. Res., 13(4), 356 (2005)
  28. Viswanathan G, Chakrapani N, Yang HC, Wei BQ, Chung HS, Cho KW, Ryu CY, Ajayan PM, J. Am. Chem. Soc., 125(31), 9258 (2003)
  29. Barraza HJ, Pompeo F, O’Rear EA, Resasco DE, Nano Lett., 2, 797 (2002)
  30. Baskaran D, Mays JW, Bratcher MS, Chem. Mater., 17, 3389 (2005)
  31. Satake A, Miyajima Y, Kobuke Y, Chem. Mater., 17, 716 (2005)
  32. Lou X, Daussin R, Cuenot S, Duwez AS, Pagnoulle C, Detrembleur C, Bailly C, Jerome R, Chem. Mater., 16, 4005 (2004)
  33. Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, Diehl MR, Boukai A, Heath JR, Macromolecules, 36(3), 553 (2003)
  34. Murakami H, Nakashima N, J. Nanosci. Nanotechnol., 6, 16 (2006)
  35. Petrov P, Stassin F, Pagnoulle C, Jerome R, Chem. Commun., 23, 2904 (2003)
  36. Zhang X, Zhang J, Wang R, Liu Z, Carbon, 42, 1455 (2004)
  37. Hwang GL, Shieh YT, Hwang KC, Adv. Funct. Mater., 14, 487 (2004)
  38. Chang WH, Cheong IW, Shim SE, Choe S, Macromol. Res., 14(5), 545 (2006)
  39. Kang M, Myung SJ, Jin HJ, Polymer, 47(11), 3961 (2006)
  40. Wanless EJ, Ducker WA, J. Phys. Chem., 100(8), 3207 (1996)
  41. Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK, Langmuir, 10(12), 4409 (1994)
  42. Park I, Lee W, Kim J, Park M, Lee H, Sens. Actuators B-Chem., 126, 301 (2007)