화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.5, 407-414, October, 2007
컴퓨터지원공학(CAE)을 활용한 자동차 부품 개선
Application of CAE in Injection Molding Process of Automobile Part
E-mail:
초록
Moldflow사의 CAE 해석 프로그램인 MPI (Moldflow Plastics Insight)를 이용하여 PP(polypropylene)에 talc 20%가 들어간 수지를 사용한 자동차 공기 청정기 상부 덮개의 최적 공정을 찾았다. 핀 게이트가 하나인 기존 시스템을 CASE-1, 두 개로 새로운 공정을 CASE-2로 디자인하여 두 공정에 대한 유동 발란스 등을 비교하였다. CASE-2는 충진 시간이 더 짧아 생산성과 공정성의 향상이, 유동성과 부피수축율이 하부 덮개와 유사하게 나타나 조립성과 조립 후의 변형 및 물성발현이 향상되었다. 또한 전단속도와 전단응력의 해석결과, CASE-1의 문제점은 잔류 응력에 의한 것보다는 상.하부 덮개의 크기 차이에 의한 것으로 판단되며, 결국 수지의 배향 문제는 게이트 구조를 최적화 함으로써 파손 문제를 해결할 수 있을 것이라 예상된다.
Using the MPI (Moldflow Plastics Insight) software from Moldflow Co., the optimum conditions for producing the upper part of the automobile air cleaner were obtained for 20% talc filled polypropylene (PP). The analysis was carried out to solve the cracking problem between upper and lower parts and the improved process was proposed using the flow balance. The comparative results between the conventional process, CASE-1, with one-pin gate and the new process (CASE-2) comprising two-pin gate system are the followings. In the case of CASE-2, the shorter filling time and reduced cycle time induced an improved production and processibility. In addition, the orientation and volumetric shrinkage are similar to those observed in the lower part, but the assembly, deformation, and physical characteristics are enhanced. The problem induced by the CASE-1 did not originate from the residual stress, but from the difference in the size of the upper part air cleaner after shrinkage. Thus, the orientation problem was expected to improve by optimizing the gate structure.
  1. Spencer RS, Gilmore GD, J. Colloid Sci., 6, 118 (1950)
  2. Spencer RS, Gilmore GD, J. Appl. Phys., 21, 523 (1950)
  3. Kamal MR, Kenig S, Polym. Eng. Sci., 12, 294 (1972)
  4. Kamal MR, Kenig S, Polym. Eng. Sci., 12, 302 (1972)
  5. Ballman RL, Shusman T, Toor HL, Ind. Eng. Chem., 51, 847 (1959)
  6. Harry DH, Parrot RG, Polym. Eng. Sci., 10, 209 (1970)
  7. Lord HA, Williams G, Polym. Eng. Sci., 15, 569 (1975)
  8. Tadmor Z, Gogos CG, Principles of Polymer Processing, John Wiley & Sons, New York (1979)
  9. Kamal MR, Kuo Y, Doan PH, Polym. Eng. Sci., 15, 863 (1975)
  10. Wang KK, Shen SF, Stevenson JF, Hieber CA, CIMP Progress Report., 9 (1977)
  11. Tadmor Z, Broyer E, Gutfinger C, Polym. Eng. Sci., 14, 660 (1974)
  12. Dietz W, White JL, Clark ES, Polym. Eng. Sci., 18, 273 (1978)
  13. Chaung TS, Ryan ME, Polym. Eng. Sci., 21, 271 (1981)
  14. Kamal MR, Lafleur PC, Polym. Eng. Sci., 26, 102 (1986)
  15. Wang KK, Shen SF, Cohen C, Hieber CA, CIMP Progress Report, 13 (1987)
  16. Moy FH, Kamal MR, Polym. Eng. Sci., 20, 957 (1980)
  17. Wang KK, Shen SF, Cohen C, Hieber CA, Isayev AI, CIMP Progress Report, 10, 130 (1984)
  18. Kim B, Jang W, Kim J, Chung CW, Park Y, Lee BH, Choe S, Polymer, 25, 6 (2001)
  19. Kim B, Jang W, Kim J, Park Y, Lee BH, Choe S, Korean J. Chem. Eng., 41(5), 577 (2003)
  20. Wang KK, Shen SF, Cohen C, Hieber CA, Ricketson RC, Wang VW, Emerman S, CIMP Progress Report, 12 (1986)
  21. Kazmer DO, Speight RG, J. Injection Molding Tech, 1, 81 (1997)