화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.44, No.6, 644-649, December, 2006
오존처리가 활성탄소의 Cr(VI) 흡착특성에 미치는 영향
Influence of Ozone Treatment on Cr(VI) Adsorption of Activated Carbon
E-mail:
초록
본 연구에서는 다양한 조건에서 기체상태의 오존처리된 활성탄소를 이용하여 수용액 상태에서의 Cr(VI)의 흡착특성에 대하여 고찰하였다. 오존처리된 활성탄소의 표면특성의 변화는 pH, 산도-염기도, FT-IR을 이용하였으며, N2/77K 등온 흡착특성은 BET식, Boer의 t-plot, 그리고 Horvath-Kawazoe의 slit pore model을 이용하여 확인하였다. 또한, 총 Cr의 흡착량은 ICP-AES를 이용하여 확인하였다. 실험 결과, 오존처리는 활성탄소의 표면에 산소를 함유한 극성 관능기를 증가시켰으며, 이로 표면산도 또한 증가되었다. 한편, 오존처리의 영향으로 보이는 활성탄소의 비표면적과 미세기공 부피의 감소가 관찰되었지만, 활성탄소의 총 Cr 흡착량은 오존처리 시간이 증가할수록 비례적으로 증가하였다. 이는 활성탄소의 Cr 흡착특성이 비표면적보다 상대적으로 표면에 형성된 극성 관능기의 영향을 크게 받는 것으로 판단된다.
In this paper, the Cr(VI) adsorption behaviors of activated carbons (ACs) treated by various ozone treatment conditions were studied. The surface properties of the ACs studied were determined by pH, acid-base, and FT-IR measurements. N2 adsorption isotherm characteristics at 77K were confirmed by BET equation, Boer’s t-plot method, and Horvath-Kawazoe’s slit pore model. Also, the total Cr adsorption amount onto the ACs was measured by ICP-AES. As a result, the ozone treatment led to an increase of oxygen-containing polar functional groups and total acidity as well. Meanwhile, the specific surface areas or micropore volumes were slightly decreased after the ozone treatment due to the micropore filling or blocking. Nevertheless, the total Cr adsorption of ACs was increased with increasing of the ozone treatment time, attributed to the good interaction between Cr ions and polar functional groups on the ACs.
  1. EPA (Environmental Protection Agency), EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati, US (1990)
  2. Patterson JW, Industrial Wastewater Treatment Technology, 2nd ed., Butterworth- Heinemann, London, 95-120 (1985)
  3. Selvaraj K, Manonmani S, Pattabhi S, Bioresour. Technol., 89(2), 207 (2003)
  4. Babel S, Kurniawan TA, Chemosphere, 54, 951 (2004)
  5. Tseng H, Wey M, Liang Y, Chen K, Carbon, 41, 39 (2003)
  6. Benito Y, Ruiz ML, Desalination, 142(3), 229 (2002)
  7. Babel S, Kurniawan TA, J. Hazard. Mater., 97, 219 (2003)
  8. Genc O, Arpa C, Bayramo lu G, Arica MY, Bektap S, Hydrometallurgy, 67, 53 (2002)
  9. Mohanty K, Jha M, Meikap BC, Biswas MN, Chem. Eng. Sci., 60(11), 3049 (2005)
  10. Lyubchik SI, Lyubchik AI, Galushko OL, Tikhonova LP, Vital J, Fonseca IM, Lyubchik SB, Colloids Surf. A: Physicochem. Eng. Asp., 242, 151 (2004)
  11. Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
  12. Ton-That C, Teare DOH, Campbell PA, Bradley RJ, Surf. Sci., 433, 278 (1999)
  13. Ko YG, Kim YH, Park KD, Lee HJ, Lee WK, Park HD, Kim SH, Lee GS, Ahn DJ, Biomaterials, 22(15), 2115 (2001)
  14. Fu X, Lu W, Chung DDL, Carbon, 36, 1337 (1998)
  15. Boehm HP, Adv. Catal., 16, 179 (1966)
  16. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  17. De Boer JH, Linppen BG, Plas P, van Zonder GJ, J. Catal., 4, 649 (1965)
  18. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  19. Cotton FA, Wilkinson H, Murillo CA, in: Advanced Inorganic chemistry, Wiley, New York, 150-210 (2004)
  20. Cimino G, Passerini A, Toscano G, Water Res., 34(11), 2955 (2000)
  21. Garg VK, Gupta R, Kumar R, Gupta RK, Bioresour. Technol., 92(1), 79 (2004)
  22. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
  23. Wagner CK, Riggs WM, Davis LE, Moulder JF, Handbook of X-ray Photoelectron spectroscopy, Perkin-Elmer Corp. Norrwalk, 50-110 (1979)
  24. Park SJ, Jung WY, J. Colloid Interface Sci., 250(1), 93 (2002)
  25. Utrilla JR, Polo MS, Water Res., 37, 3335 (2003)
  26. Gregg SJ, Sing KSW, Adsorption, surface Area, and Porosity, Academic press, London, 50-100 (1982)
  27. Park SJ, Jang YS, Shim JW, Ryu SK, J. Colloid Interface Sci., 260(2), 259 (2003)
  28. Park SJ, in J. P. Hsu(Ed.), Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 385-440 (1999)
  29. Huang CP, Stumm W, J. Colloid Interface Sci., 43, 409 (1973)