화학공학소재연구정보센터
Chemical Engineering Science, Vol.61, No.12, 4098-4110, 2006
Experimental and numerical study of gas hold-up in surface aerated stirred tanks
Although the distribution of gas hold-up in stirred tanks is a key factor to their design and operation, systematic experimental data on local gas hold-up of surface-aerated stirred tanks are not available in open literature. In this work, turbulent two-phase flow in a surface aeration stirred tank with a diameter of 0.380m was investigated experimentally and numerically. The gas hold-up was measured with a conductance probe at various operating conditions. A surface baffle to improve the efficiency of surface aeration of a Rushton disk turbine was designed and tested. The experimental data suggest that the gas hold-up distribution in the surface aeration tank is very non-uniform, and the surface baffle improves the aeration rate particularly at a high agitation speed. A three-dimensional in-house computational fluid dynamic (CFD) two-fluid model with the standard k-epsilon-A(P) turbulence model was used to predict the gas-liquid flow, and the impeller region was handled using the improved inner-outer iterative procedure. Based on Kolmogoroff's theory of isotropic turbulence, a constitutive equation for surface aeration strength was proposed. The numerical prediction, in combination with the measurements, gives insight to the surface aeration performance of stirred tanks. it was found that the simulation reasonably predicted the gas hold-up distribution in the upper tank, but underestimated it in the region below the stirrer. (c) 2006 Elsevier Ltd. All rights reserved.