화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.44, No.3, 248-253, June, 2006
초임계 이산화탄소를 이용한 MCM-41에의 Ibuprofen 함침
Impregnation of Ibuprofen on MCM-41 using Supercritical Carbon Dioxide
E-mail:
초록
효율적인 약물 전달 시스템을 개발하기 위한 연구의 일환으로, 초임계 상태에서 mesoporous silica인 MCM-41에 항염증제 ibuprofen을 함침시키고, 그 방출효과를 실험적으로 조사하였다. 초임계 용매로는 기존의 약물 처리 공정에 사용되는 유기용매의 단점을 보완할 수 있는 무독성의 초임계 이산화탄소를 선택하였다. 실험은 수열합성법에 의한 MCM-41의 합성, 초임계 이산화탄소에 의한 MCM-41에의 ibuprofen 함침 및 함침된 ibuprofen 용출의 세 공정으로 구성하였다. 초임계 함침 공정의 함침평형에 도달하는 시간은 본 연구의 조건 범위에서 약 2 h 정도였으며, 평형 함침량은 초임계 이산화탄소에 대한 ibuprofen의 용해도 증가에 따라 증가하였다. Ibuprofen의 용출속도는 함침된 ibuprofen의 함량에 무관하게 유사한 형태의 용출 특성을 나타내었다.
In order to develope an efficient drug delivery system, experimental researches on the supercritical impregnation of ibuprofen onto mesoporous silica, MCM-41,and its drug release characteristics were performed. Supercritical carbon dioxide was adapted as an alternative solvent as it is harmless and able to avoid defects of organic solvents in drug manufacturing processes. The procedure was composed of three steps, that is, as hydrothermal synthesis of MCM-41, supercritical impregnation of ibuprofen onto MCM-41 and release of impregnated ibuprofen. Supercritical impregnation reached equilibrium within 2 h for all cases of this research and the amount of equilibrium impregnation increased with solubility of ibuprofen in supercritical carbon dioxide. Release profiles of impregnated ibuprofen showed a similar behavior for all MCM-41 with different impregnated ibuprofen.
  1. Krukonis VJ, “Supercritical Fluid Nucleation of Difficult to Comminate Solids,” AIChE Annual Meeting, San Francisco, November (1984)
  2. Larson KA, King ML, Biotechnol. Prog., 2(2), 73 (1983)
  3. Matson DW, Petersen RC, Smith RD, Mater. Lett., 4(10), 429 (1986) 
  4. Mohamed RS, Halverson DS, Debenedetti PG, Prud’homme RK, ACS Symp. Ser., 406, 355 (1989)
  5. Peterson RC, Matson DW, Smith RD, J. Am. Chem. Soc., 108(7), 2100 (1986) 
  6. Mohamed RS, Debenedetti PG, Prud’homme RK, AIChE J., 35(2), 325 (1989) 
  7. Tavana A, Randolph AD, AIChE J., 35(10), 1625 (1989) 
  8. Frank SG, Ye C, “Small Particle Formation and Dissolution Rate Enhancement of Relatively Insoluble Drugs Using Rapid Expansion of Supercritical Solutions(RESS) Processing,” Proceedings(CD-ROM) of the Fifth International Symposium on Supercritical Fluids (2000)
  9. Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK, Ind. Eng. Chem. Res., 39(12), 4794 (2000) 
  10. Foster NR, Dehghani F, Charoenchaitrakool M, Warwick B, AAPS Pharm. Sci., 5, 105 (2003)
  11. Guney O, Akgerman A, AIChE J., 48(4), 856 (2002) 
  12. Kikic I, Alessi P, Cortesi A, Eva F, Fogar A, Moneghini M, Perissutti B, Voinovich D, Chemical Enginnering Transactions, 2, 821 (2002)
  13. Ginty PJ, Whitaker MJ, Shaksheff KM, Howdle SM, Materials today, 8(8), 42 (2005) 
  14. Charnay C, Bgu S, Tourn-Pteilh C, Nicole L, Lerner DA, Devoisselle JM, Eur. J. Pharm. Biopharm., 57(3), 533 (2004) 
  15. Andersson J, Rosenholm J, Areva S, Lindn M, Chem. Mater., 16, 4160 (2004) 
  16. Ciesla U, Schuth F, Microporous Mesoporous Mater., 27(2/3), 131 (1999)
  17. Grun M, Lauer I, Unger KK, Adv. Mater., 9(3), 254 (1997) 
  18. Davies NM, Clin. Pharmacokinet., 34(2), 101 (1998) 
  19. Vallet-REgi M, Ramila A, del Real RP, Perez-Pariente J, Chem. Mater., 13(2), 308 (2001) 
  20. Loth H, Hemgesberg E, Int. J. Pharm., 32(2/3), 265 (1986)