화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.3, 230-237, May, 2006
Acetoacetoxy기 함유 아크릴수지와 Allophanate-Trimer에 의한 하이솔리드 도료의 도막물성
Physical Properties of High-Solid Coatings with Acrylic Resins Containing Acetoacetoxy Group and Allophanate-Trimer
E-mail:
초록
단량체로 methyl methacrylate, n-butyl acrylate, 2-hydroxyethyl acrylate와 도막물성 향상 및 가교밀도를 극대화시켜 줄 관능성 단량체인 acetoacetoxyethyl methacrylate(AAEM)를 반응시켜 4원공중합체인 고형분 80%의 아크릴수지(HSA-98-20, HSA-98-0, HSA-98+20)를 합성하였다. AAEM 성분이 함유된 아크릴수지의 점성도는 1420∼5760 cps, 수평균분자량 2080∼2300 g/mol, 다분산도 2.07∼2.19 및 전환율 88∼93%이었다. 고형분 80%인 아크릴수지와 이소시아네이트 경화제를 상온에서 경화시켜 하이솔리드 도료(HSA-98-20C, HSA-98-0C, HSA-98+20C)를 제조하고 도막시편을 제작하여 각종 물성 시험을 수행한 결과, 제조된 하이솔리드 도료내에 AAEM 도입 전후의 도막물성이 비교실험에서 AAEM 도입후에 내마모성과 내용제성이 증진됨으로써 자동차 상도용 도료에의 적용이 가능케 되었다. 또한 점탄성 측정에 의한 도막의 경화거동에서 HSA-98+20C > HSA-98-0C > HSA-98-20C의 순서로 경화가 빨리 진행됨으로써, 유리 전이 온도 값의 증가함에 따라 경화속도가 빨라짐을 알 수 있었다.
Copolymers(HSA-98-20, HSA-98-0, HSA-98+20) which are acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, acetoacetoxyethyl methacrylate (AAEM), which may give improvements in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows : viscosities, 1420∼5760 cps ; number average molecular weight, 2080∼2300 g/mol; polydispersity index, 2.07∼2.19 ; and conversions, 88∼93%. In the next step, high-solid coatings (HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined on the film coated with the prepared high-solid coatings. The introduction of AAEM to the coatings enhanced the abrasion resistance and solvent resistance, which indicated the possible use of high-solid coatings for top-coating materials of automobile. Since the curing by viscoelastic measurement occurred in sequence of HSA-98+20C > HSA-98-0C > HSA-98-20C, it was concluded that the curing rates became faster with incresing Tg values.
  1. Okuyama S, Toso Gijutsu, 43, 90 (2004)
  2. Nakayama Y, Kogyo Zairyo, 46, 21 (1998)
  3. Nakano Y, Toso Gijutsu, 40, 91 (2001)
  4. Ito A, Toso Kogaku, 37, 316 (2002)
  5. Schicht H, Schindler H, Schmidt U, Marold A, WO 0242234A1 (2002)
  6. Merfeld G, Molaison C, Koeniger R, Acar A, Prog. Org. Coat., 52, 98 (2005) 
  7. Yokogawa Y, Inagaki M, Kameyama T, Ceramic Engineering and Science Proceedings, 25, 555 (2004)
  8. Guo Q, Chen H, Huagong Jinzhan, 22, 947 (2003)
  9. Gite VV, Kapadi UR, Hundiwale DG, Paintindia, 53, 47 (2003)
  10. Kubo A, Toso Kogaku, 38, 284 (2003)
  11. Onoda H, Sugiura K, Matsuno Y, Isaka H, U. S. Patent 176,568A1 (2003)
  12. Buter R, J. Coat. Technol., 59, 37 (1987)
  13. Chung DJ, Park HJ, Kim SR, Hahm HS, Park HS, Kim SK, J. Kor. Oil Chem. Soc., 20, 8 (2002)
  14. Loper SW, Uhlianuk PW, U. S. Patent 185,269A1 (2004)
  15. Wan C, Lu X, Tuliao Gongye, 30, 5 (2000)
  16. Schwartz M, Baumstark R, Waterbased Acrylates for Decorative Coatings, pp 17-21, Vincentz Verlag, Hannover (2001)
  17. Kim SJ, "Syntheses of High Solids Acrylic Resins Containing Acetoacetoxy Group and Their Curing Behaviors with Melamine", Ph. D. Dissertation, Myongji Univ., Yongin, Korea (1997)
  18. Eastman Chemical Co., Acetoacetoxyethyl Methacrylate: Acetoacetyl Chemistry, N-319A, June, Kingsport (1993)
  19. Zhu S, Tian Y, Hamielec AE, Eaton DR, Polymer, 31, 154 (1990) 
  20. Odian G, Principles of Polymerization, 2nd ed., John Wiley & Sons, Inc., New York (1981)
  21. de Lange PG, J. Coat. Technol., 56, 23 (1984)
  22. Kim DW, Hwang KH, Jung CH, Wu JP, Park HS, Polym.(Korea), 24(4), 520 (2000)
  23. Han CH, Lee DS, J. Appl. Polym. Sci., 34, 793 (1987) 
  24. Lambourne R, Strivens TA, Paint and Surface Coatings:Theory and Practice, 2nd ed., pp 550-597, Woodhead Pub. Cambridge (1999)
  25. Macosko CW, Britisch Polym. J., 17, 239 (1985)
  26. Park JH, Shin YJ, Polym.(Korea), 21(6), 894 (1997)