화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.14, No.1, 122-126, 2006
Effect of surface treatment on flow boiling heat transfer coefficient in CaSO4 containing water
This paper reports the influence of heat transfer surface treatment on the formation of calcium sulphate deposit during flow boiling heat transfer. The surface of several test heaters was treated by surface modification techniques, such as dynamic mixing magnetron sputtering [DLC (diamond-like carbon), DLC-F (diamond-like carbon-fluorine) and AC (amorphous carbon)] and polishing to reduce surface energy. The results showed that heat transfer surface with low surface energy experienced significant reduction of formation of CaSO4 deposit. (1) Magnetron sputtering stainless steel heat transfer surface with DLC, DLC-F and plasma arc sputtering with AC did not change the surface roughness, but they reduced surface energy and improved heat transfer coefficient, so hindered CaSO4 deposit formation significantly. The DLC-F surface performed better than the DLC surface. (2) Surface energy played an important pole in improving heat transfer coefficient. The less the surface energy the more significant the heat transfer coefficient improved with other experimental conditions identical. (3) The polished surface improved the roughness of the heater, but owing to the high surface energy it was not better than the DLC-F surface for a long-term consideration on improving the heat transfer coefficient.