화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.5, 457-462, September, 2005
폴리우레탄 발포체의 물성에 대한 이소시아네이트 인덱스와 노화의 영향
Effects of Isocyanate Index and Aging on the Physical Properties of Polyurethane Foams
E-mail:
초록
Polymeric 4,4'-diphenylmethane diisocyanate(PMDI), OH 값이 480인 혼합 폴리올, 실리콘 계면활성제, 세 종류의 촉매 그리고 발포제로 불화탄회수소계를 사용하여 폴리우레탄 발포체(PUF)를 제조하였다. 촉매로는 balance 촉매(PC-8), 젤화촉매(33LV) 그리고 삼량화 촉매(TMR-2)가 이용되었으며, 이소시아네이트(NCO) 인덱스(index)와 노화시간에 따른 PUF의 물성에 대한 촉매의 영향을 조사하였다. PC-8과 33LV를 이용한 PUF의 압축강도는 NCO 인덱스에 따라 큰 변화를 보이지 않은 반면 발포셀의 크기는 약간 증가하였다. 삼량화 촉매의 경우에, PUF의 압축 강도는 NCO 인덱스에 따라 8.75에서 10.5 kgf/cm2으로 증가하였고 발포셀의 크기는 감소하였다. 33LV를 이용한 PUF의 압축강도는 노화시간이 증가함에 따라 9.21에서 10.15 kgf/cm2으로 증가하였으나 삼량화 촉매인 TMR-2를 이용한 경우에는 거의 변화가 나타나지 않았다. 이는 미반응 MDI에 의한 추가적인 가교반응에 의해 설명할 수 있고 FTIR의 결과로 확인하였다.
Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), mixed polyol with OH value of 480, silicone surfactant, three catalysts, and hydrofluorocarbon (HFC) as blowing agent. Balance (PC-8), gelling (33LV), and trimerization (TMR-2) catalysts were used. The effect of the catalysts on the physical properties of PUF with increase of isocyanate (NCO) index and aging tinme was investigated. The cell size of the PUF with PC-8 and 33LV slightly increased with an increase in NCO index from 100 to 170 but compressive strength did not change significantly. In case of trimerization catalyst, the compressive strength of PUF increased from 8.75 to 10.50 kgf/cm2 and the cell size decreased with an increase in NCO index. The compressive strength of the PUF with 33LV increased from 9.21 to 10.15 kgf/cm2 with an increase in aging time. However, there was no detectable change in the compressive strength of PUF with TMR-2. A possible interpretation of the results includes an additional cross-link reaction of non-reacted MDI and FTIR spectrum illustrated the change of NCO peak.
  1. Hepburn C, Polyurethane Elastomers, Elsevier Science, New York (1992)
  2. Oertel G, Polyurethane Handbook, 2nd Ed., Carl Hanser Verlag, Munich Vienna, New York (1994)
  3. Kim C, Youn JR, Lee J, Korean J. Rheol., 9(4), 190 (1997)
  4. Doyle EN, The Development and Use of Polyurethane Products, McGraw-Hill Book Company, New York (1984)
  5. Lee HS, Lee NW, Paik KH, Ihm DW, Macromolecules, 27(15), 4364 (1994) 
  6. Baser SA, Khakhar DV, Polym. Eng. Sci., 34(8), 642 (1994) 
  7. Ravey M, Pearce EM, J. Appl. Polym. Sci., 63(1), 47 (1997) 
  8. Sharpe J, MacArthur D, Liu M, Kollie T, Graves R, Hendriks R, J. Cell. Plast., 31, 313 (1995)
  9. Fishback TL, Reichel CJ, J. Cell. Plast., 30, 84 (1994)
  10. Volkert O, Adv. Urethane Sci. Tech., 13, 53 (1996)
  11. Creazzo JA, Hammel HS, Cicalo KJ, Schimdler P, J. Cell. Plast., 31, 154 (1995)
  12. Volkert O, J. Cell. Plast., 31, 210 (1995)
  13. Seo WJ, Jung HC, Kim YH, Kim WN, Choe KH, Lee YB, Choi SH, Polym.(Korea), 26(2), 185 (2002)
  14. Baek WS, Lee KY, Polym.(Korea), 25(4), 528 (2001)
  15. Petrovic S, Ilavsky M, Dusek K, Vidakovic M, Javni I, Banjanin B, J. Appl. Polym. Sci., 42, 391 (1991) 
  16. Camargo RE, Marcosko CW, Tirrell M, Wellinghoff ST, Polymer, 26, 1145 (1985) 
  17. Nierzwicki W, Wysocka E, J. Appl. Polym. Sci., 25, 739 (1980) 
  18. Hur MK, Kwak JM, Hur T, Polym.(Korea), 20(3), 392 (1996)
  19. Coogan RG, Prog. Org. Coat., 32, 51 (1997) 
  20. Lee TY, Lee HS, Seo SW, Polym. Sci. Technol., 10(5), 597 (1999)