화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.3, 425-431, June, 2005
2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극
Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor
E-mail:
초록
비표면적이 큰 혼합 활성탄과 전도도가 높은 전도성고분자 폴리피롤을 이용하여 낮은 임피던스와 높은 에너지밀도 를 가지는 새로운 형태의 슈퍼커패시터를 제조하였다. 전극 활성물질로 활성탄 BP-20과 MSP-20을 사용하였고, 전기 전도도를 높이기 위하여 활성탄에 전도성 개량제 카본블랙(Super P)과 2-naphthalenesulfonic acid(2-NSA)로 도핑된 전도성 고분자 폴리피롤을 첨가하였다. 용액상태의 유기 결합제 poly(vinylidenefluoride-co-hexafluoropropylene) [P(VdFco-HFP)/NMP]에 전극 소재들을 혼합시켜 전극을 제조하였다. 실험 결과 최적의 전극 배합비는 78(MSP-20: BP-20=1 : 1) : 17 (Super P : Ppy=10:7) : 5 [P(VdF-co-HFP)] wt%이었다. 폴리피롤이 7 wt% 첨가된 단위셀의 비정전용량 은 28.02 F/g, DC-ESR은 1.34 Ω, AC-ESR은 0.36 Ω, 에너지밀도는 19.87 Wh/kg, 동력밀도는 9.77 kW/kg이었다. 500회 충·방전 실험 후 초기 정전용량의 80%를 유지하여 사이클 특성이 우수하였다. 폴리피롤을 첨가함으로써 낮은 내부 저항, 슈도용량(pseudo capacitance)의 발현, 낮은 전하전이저항 및 빠른 반응속도에 의하여 급속한 충·방전이 가능하였다. 그리고 활성탄의 흡탈착에 의한 비패러데이 용량과 폴리피롤의 산화·환원에 의한 슈도용량의 복합현상 때문에 비정전용량이 높게 나타났다.
New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP-20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of 1.34 Ω, AC-ESR of 0.36 Ω, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.
  1. Conway BE, "Electrochemical Supercapacitors", Kluwer Academic and Plenum Publishers, New York (1999)
  2. Nishino A, Naoi K, "Technologies & Materials for Supercapacitor", CMC, Tokyo (1998)
  3. Rudge A, Davey J, Raistrick I, Gottesfeld S, J. Power Sources, 47(1-2), 89 (1994) 
  4. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS, Polym. Int., 47(1), 28 (1998) 
  5. West K, Zachau-Christansen B, Jacobsen T, Skaarup S, Materials Sci. and Eng., B13(3), 229 (1992)
  6. Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S, J. Appl. Polym. Sci., 74(11), 2065 (1999)
  7. Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K, Electrochim. Acta, 45(23), 3813 (2000) 
  8. Laforgue A, Simon P, Fauvarque JF, Sarrau JF, Lailler P, J. Electrochem. Soc., 148(10), A1130 (2001) 
  9. Park JH, Park OO, J. Power Sources, 111(1), 185 (2002) 
  10. Dutta P, De SK, Synth. Met., 139(2), 201 (2003) 
  11. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH, J. Power Sources, 103(2), 305 (2002) 
  12. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E, Chem. Phys. Lett., 347(1), 36 (2001) 
  13. Endo M, Takeda T, Kim YJ, Koshiba K, Ishii K, Carbon Sci., 1, 117 (2000)
  14. Oh HS, Kim KM, Kang AS, HWAHAK KONGHAK, 41(6), 788 (2003)
  15. Panero S, Prosperi P, Passerini S, Scrosati B, Perlmutter D, J. Electrochem. Soc., 136(12), 3729 (1989) 
  16. Sawai K, Ohzuku T, J. Electrochem. Soc., 144(3), 988 (1997) 
  17. Yoon S, Lee JW, Hyeon T, Oh SM, J. Electrochem. Soc., 147(7), 2507 (2000) 
  18. Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H, J. Electrochem. Soc., 148(7), A668 (2001)