화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.3, 271-276, May, 2005
폴리프로필렌/몬모릴로나이트 나노복합체의 제조 및 물성
Preparation and Characterization of Polypropylene/Montmorillonite Nanocomposites
E-mail:
초록
폴리프로필렌(Polypropylene, PP)과 몬모릴로나이트(Montmorillonite, MMT)의 나노복합체를 용융 혼합 방법으로 제조하였다. MMT는 dimethyl hydrogenated tallow 2-ethylhexyl ammonium으로 개질된 MMT(Cloisite 15A)를 사용하였다. 상용화제로는 telechelic OH 그룹을 갖는 폴리올레핀 올리고머를 사용하였다. X선 회절 패턴의 분석과 TEM 사진을 통해 MMT의 박리 정도를 조사하였다. 상용화제의 함량이 25 phr일 경우 MMT의 박리가 잘 일어나는 것을 알 수 있었다. 열중량분석법(TGA)으로 측정한 열안정성은 MMT의 함량이 5 phr까지 증가할수록 우수해짐을 확인하였다. 복합전단 점도와 저장 탄성률은 상용화제의 함량이 감소할수록, MMT의 함량이 증가할수록 우수해지는 것으로 나타났다.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by melt mixing methods. MMT modified by dimethyl hydrogenated tallow 2-ethylhexyl ammonium (Cloisite 15A) was used. Polyolefine oligomer with telechelic OH groups was used as a compatibilizer. The degree of dispersion of MMT in the nanocomposites was measured by X-ray diffractometer and transmission electron microscope (TEM) images. MMT was well exfoliated when the contents of compatibilizer was 25 phr. The thermal stability that observed by thermogravimetric analysis (TGA) increased with the contents of MMT increased up to 5 phr. The complex viscosities and storage moduli of PP nanocomposites enhanced as the contents of compatibilizer decreased and those of MMT increased.
  1. Giannelis EP, Adv. Mater., 8, 29 (1996) 
  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 983 (1993) 
  3. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, Kaji K, J. Polym. Sci. B: Polym. Phys., 32(4), 625 (1994) 
  4. Gilman JW, Appl. Clay Sci., 15, 32 (1999)
  5. PUkanszly B, Polypropylene: Structure, Blends and Composites, J. Karger-Kocsis, Editor, Chapman and Hall, London, vol.3, p 1 (1995)
  6. Chu PF, Handbook of Polypropylene and Polypropylene Composites, H. G. Karian, Editor, Marcel Dekker, New York, p 263 (1999)
  7. Alexandre M, Dubois P, Mater. Sci. Eng. R-Rep., 28, 1 (2000) 
  8. Giannelis EP, Krishnamoorti RK, Adv. Polym. Sci., 138, 107 (1998)
  9. Lee DC, Jang LW, J. Appl. Polym. Sci., 61(7), 1117 (1996) 
  10. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993) 
  11. Choi HK, Park YH, Lyu SG, Kim BS, Sur GS, Polym.(Korea), 23(3), 456 (1999)
  12. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A, Macromolecules, 30(20), 6333 (1997) 
  13. Lagaly G, Solid State Ion., 22, 43 (1986) 
  14. Nachtigall SMB, Neto RB, Mauler RS, Polym. Eng. Sci., 39(4), 630 (1999) 
  15. Ogawa M, J. Am. Chem. Soc., 116(17), 7941 (1994) 
  16. Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S, Polym. Degrad. Stabil., 85, 807 (2004) 
  17. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH, Chem. Mater., 12, 1866 (2000) 
  18. Krishnamoorti R, Vaia RA, Giannelis EP, Chem. Mater., 8, 1728 (1996) 
  19. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P, Macromolecules, 34(6), 1864 (2001) 
  20. Li SC, Jarvela PK, Jarvela PA, J. Appl. Polym. Sci., 71(10), 1649 (1999) 
  21. Krishnamoorti R, Giannelis EP, Macromolecules, 30(14), 4097 (1997) 
  22. Moussaif N, Groeninckx G, Polymer, 44, 7899 (2004) 
  23. Lim YT, Park OO, Rheol. Acta, 40(3), 220 (2001)