화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.2, 151-155, March, 2005
카본블랙 표면의 산-염기 특성변화가 카본블랙/EPDM 복합재료의 기계적 특성에 미치는 영향
Effect of Acid-Base Characteristics of Carbon Black Surfaces on Mechanical Behaviors of EPDM Matrix Composites
E-mail:
초록
카본블랙의 산-염기 표면처리에 따른 카본블랙/고무 복합재료의 기계적 물성에 대해 고찰하였다. 산-염기 표면처리에 의한 카본블랙 표면특성은 pH, 표면 산·염기도와 표면자유에너지를 통해 알아보았으며, 카본블랙/고무 복합재료의 기계적 물성은 가교밀도(Ve)와 인열에너지(T) 등을 통해 살펴보았다. 카본블랙을 산성 용액으로 처리한 경우는 표면자유에너지의 극성 요소(γssp) 증가로, 카본블랙/고무 복합재료의 기계적 물성이 감소하였다. 반면에, 염기성 용액으로 처리한 경우는 산성 용액으로 처리한 경우 또는 표면처리를 시행하지 않은 경우보다 표면자유에너지의 비극성 요소(γsL) 증가와 충전제-고무의 상호작용 증가로 인하여 카본블랙/EPDM 복합재료의 가교밀도와 기계적 물성이 증가하였다. 이를 통해 산-염기 표면처리에 의한 카본블랙의 표면특성이 고무 매트릭스 복합재료의 물리적 거동에 중요한 인자로 작용함을 확인하였다.
The effect of acid-base treatments of carbon blacks (CBs) was investigated in the mechanical properties of CBs/rubber composites. The surface characteristics of the CBs were determined by the pH, acid-base values, and tearing energy (T). As an experimental result, acidically treated CBs led to the increase of the specific component (γs sp), resulting in decreasing the mechanical properties of the composites. However, basically treated CBs showed a higher value of the dispersive component (γsL) than that of the untreated or acidically treated CBs. It was also found that the interaction of the CBs-rubber was improved, resulting in the improvement of the crosslink density and mechanical properties of the composites. It was then remarked that the acid-base characteristics of the CB surfaces made an important role in improving the physical properties of the rubber matrix composites.
  1. Barlow FW, Rubber Compounding, Marcel Dekker, New York (1993)
  2. Medalia AI, Kraus G, Reinforcement of Elastomers by Particulate Fillers, Academic Press, San Diego (1994)
  3. Leblanc JL, Prog. Polym. Sci, 27, 627 (2002) 
  4. Flandin L, Cavaille JY, Brechet Y, Dendievel R, J. Mater. Sci., 34(8), 1753 (1999) 
  5. Wang MJ, Lu SX, Mahmud K, J. Polym. Sci. B: Polym. Phys., 38(9), 1240 (2000) 
  6. Wang MJ, Jiao M, Rubber Chem. Technol., 71, 520 (1998)
  7. Sereda L, Lopez-Gonzalez MM, Visconte LLY, Nunes RCR, Furtado CRG, Riande E, Polymer, 44(10), 3085 (2003) 
  8. Faez R, Gazotti WA, De Paoli MA, Polymer, 40(20), 5497 (1999) 
  9. Essawy H, Nashar DE, Polym. Test, 23, 803 (2004) 
  10. Antony P, De SK, Polymer, 40(6), 1487 (1999) 
  11. Findik F, Yilmaz R, Koksal T, Mater. Des., 25, 269 (2004)
  12. Schwartz GA, Cerveny S, Marzocca AJ, Gerspacher M, Nikiel L, Polymer, 44(23), 7229 (2003) 
  13. Choi SS, J. Anal. Appl. Pyrolysis, 55, 161 (2000) 
  14. Kohls DJ, Beaucage G, Curr. opin. Solid State Mat. Sci., 6, 183 (2002) 
  15. Akovali G, Ulkem I, Polymer, 40(26), 7417 (1999) 
  16. Ghosh P, Chakrabarti A, Eur. Polym. J., 36, 607 (2000) 
  17. Semann ME, Quarles CA, Niiel L, Polym. Degrad. Stabil., 75, 259 (2002) 
  18. Boehm HP, Adv. Catal., 16, 179 (1966)
  19. Adamson AW, Physical Chemistry of Surfaces, 5 Ed., John Wiley, New York (1990)
  20. Twiss DF, J. Soc. Chem. Ind., 44, 1067 (1925)
  21. Flory PJ, J. Chem. Phys., 18, 108 (1950) 
  22. Gwaily SE, Badawy MM, Hassan HH, Madani M, Polym. Test, 22, 3 (2003) 
  23. Cho K, Lee D, Polymer, 41(1), 133 (2000) 
  24. Flory PJ, Rhener J, J. Chem. Phys., 11, 512 (1943) 
  25. Ellis B, Welding GN, Techniques of Polymer Science, Soc. Chem., London (1964)
  26. Greensmith HV, Thomas AG, J. Polym. Sci. A: Polym. Chem., 43, 189 (1955)
  27. Fowkes FM, Physico-Chemical Aspects of Polymer Surfaces, Plenum, New York (1983)
  28. Wang MJ, Wolff S, Carbon Black Science and Technology, Marcel Dekker, New York (1993)
  29. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  30. Gessler AM, Rubber Chem. Technol., 42, 858 (1969)
  31. Jia W, Chen X, J. Appl. Polym. Sci., 66, 7885 (1997)