화학공학소재연구정보센터
Polymer(Korea), Vol.28, No.6, 538-544, November, 2004
인슐린을 고정화한 폴리우레탄 막의 제조 및 섬유아세포와의 상호작용
Preparation of Insulin-Immobilized Polyurethane Films and Their Interaction with Fibroblasts
E-mail:
초록
Z-라이신 올리고머를 사슬연장제로 하고 D-다이페닐이소시아네이트와 폴리테트라메틸글리콜을 반응시켜 주사슬에 L-라이신 분절을 함유하는 폴리우레틴 (PULL)을 합성하였다. PULL 표면의 아민기와 인슐린의 공유 결합으로 인슐린 고정화 폴리우레탄 (PULL-In)을 제조하였다. Bradfold법으로 측정한 고정화 인슐린의 양은 약 0.30 nmol/cm2이였다. 3H-thymidine 분석방법과 광학 현미경법으로 NIH/3T3 섬유아세포와 표면 개질된 PULL의 상호작용을 조사하였다. 그 결과 PULL-In 필름 표면에서의 세포 성장 속도는 다른 기질에서보다 높았다. 또한 고정화된 인슐린에서의 세포증식이 배양액에 용해된 인슐린에서와 거의 유사한 특성을 나타내었다.
Polyurethanes containing L-lysine segments in the main chain (PULL) were synthesized from 4, 4′-diphenymethyl diisocynate, poly(tetramethylene glycol), and z-lysine oligomer as a chain extender. Insulinimmobilized polyurethanes (PULL-In) were prepared by a coupling reaction of PULL surface amino groups with insulins. The amount of immobilized insulin was about 0.30 nmol/cm2, as determined by Bradford method. The interactions of NIH/3T3 fibroblasts with surface-modified PULLs were investigated using 3H-thymidine incoporation and optical microscopy. The cell growth rate on PULL-In film was higher than those on other substrates. The cell proliferation by the immobilized insulin was almost same as that by the free one.
  1. Baier RE, Bull. NY Acad. Med., 48, 257 (1972)
  2. Marconi W, Piozzi A, Romoli D, J. Biomater. Sci.-Polym. Ed., 8(4), 237 (1996)
  3. Szycher M, "High Performance Biomaterials", Technomic Publishing Company., Ins, Lancaster (1991)
  4. Chen JH, Wei J, Chang CY, Laiw RF, Lee YD, J. Biomed. Mater. Res., 41(4), 633 (1998) 
  5. Lamba NMK, Woodhouse KA, Cooper SL, "Polyurethanes in Biomedical Application", CRC, Boca Raton, FL (1998)
  6. Kwon OH, Nho YC, Chen J, J. Appl. Polym. Sci., 88(7), 1726 (2003) 
  7. Daniele T, Enzo B, Marta DN, Rocco DM, Giuseppe R, Graefes Arch. Clin. Exp. Ophthalmol., 241(8), 625 (2003) 
  8. Belisario MA, Tafuri S, Domenico CD, Morte RD, Squillacioti C, Lucisano A, Staiano N, Biochim. Biophys. Act., 1497(2), 227 (2000) 
  9. Maritins MCL, Wang D, Ji J, Feng L, Barbosa MA, J. Biomater. Sci.-Polym. Ed., 14(5), 439 (2003) 
  10. Ratner BD, Hoffman AS, Am. Chem. Soc. Symp. Ser., 31, 1 (1976)
  11. Khang G, Lee SJ, Jeon JH, Lee JH, Lee HB, Polym.(Korea), 24(6), 869 (2000)
  12. Lee SJ, Khang G, Lee JH, Lee YM, Lee HB, Polym.(Korea), 24(6), 877 (2000)
  13. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T, J. Biomed. Mater. Res., 15, 393 (1981) 
  14. Han DK, Jeong SY, Kim YH, J. Biomed. Mater. Res. Appl. Biomater., 23, 211 (1989)
  15. Choi JS, Lee SJ, Jang JW, Khang G, Lee YM, Lee B, Lee HB, Polym.(Korea), 27(5), 397 (2003)
  16. Mori Y, Nagaoka S, Takiuchi H, Kikuchi T, Noguchi N, Tanzawa H, Noishiki Y, Trans. Am. Soc. Artif. Intern. Organs., 28, 459 (1982)
  17. Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayshi T, J. Biomed. Mater. Res., 24, 1069 (1990) 
  18. Kang IK, Choi SH, Shin DS, Yoo SC, Int. J. Biol. Macromol., 28(3), 205 (2001) 
  19. Mansur HS, Lobato ZP, Orefice RL, Vasconcelos WL, Oliveira C, Machado LJ, Biomacromolecules, 1(4), 789 (2000) 
  20. Meng W, Hyun JY, Song DI, Kang IK, J. Appl. Polym. Sci., 90(7), 1959 (2003) 
  21. Sendemark JJ, Grossbery SE, Anal. Biochem., 79, 544 (1977) 
  22. Kim EJ, Kang IK, Jang MK, Park YB, Biomaterials, 19, 239 (1998)