화학공학소재연구정보센터
Polymer(Korea), Vol.28, No.6, 487-493, November, 2004
폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트)/실리카 나노복합체 특성에 대한 계면 개질의 효과
Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites
E-mail:
초록
계면간 상호작용이 약한 폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트) (PEB) 에멀션 고분자를 사용한 나노복합체 혼합용액에서는 pH변화에 따라 고분자 입자들과 실리카 나노입자들의 분포 형태가 결정되었다. 이러한 나노복합체는 실리카 입자의 응집이 심하였고 불규칙적인 분산성을 나타내었다. 메타아크릴옥시프로필트리메톡시실란 (MPS)를 사용하여 개질한 용액 중합 고분자나 실리카 나노입자를 사용한 나노복합체에서는 계면간 강한 상호작용으로 인하여 실리카 나노입자가 미세하게 분산되었고 코어-쉘 형태학적 특성을 나타냈다. 계면을 MPS로 개질한 나노복합체에서는 강한 수소 결합 상호작용이 존재하는 것을 적외선 분광계로 확인하였다. 강한 계면 상호작용을 갖는 나노복합체는 고분자 사슬의 유리 전이 온도가 증가하였고 ΔCp는 감소하였으며 열분해 온도는 상승되었다.
The distribution of particles, in the mixture of poly(ethyl acrylate-co-t-butyl acrylate) (PEB) emulsion polymer and silica nanoparticles, was determined mainly depending on the pH of the mixture. The weak interfacial interaction was responsible for the severe coagulation of silica particles and the irregular dispersion for these nanocomposites. Methacryloxypropyltrimethoxysilane (MPS) was used to modify both the polymer and the silica. The nanocomposites which were prepared with these modified components had finer dispersion of silica nanoparticles and core-shell morphology due to the strong interfacial interaction. The strong hydrogen bonds were identified for these nanocomposites with FT-IR. The nanocomposites having strong interfacial interaction showed the increased glass transition temperature, the decreased .Cp, and the increased decomposition temperature of the polymer chains.
  1. Dagani R, Chem. Eng. News, 77, 25 (1999)
  2. Kim JC, Park GH, Suh SJ, Lee YK, Lee SJ, Lee SJ, Nam JD, Polym.(Korea), 26(3), 367 (2002)
  3. Kang JH, Lyu SG, Choi HK, Sur GS, Polym.(Korea), 25(3), 414 (2001)
  4. Park SJ, Seo DI, Lee JR, Kim DS, Polym.(Korea), 25(4), 587 (2001)
  5. Park SJ, Cho KS, Zaborski M, Slusarski L, Polym.(Korea), 26(4), 445 (2002)
  6. Hajji P, David L, Gerard JF, Pascault JP, Vigier G, J. Polym. Sci. B: Polym. Phys., 37(22), 3172 (1999) 
  7. Yu YY, Chen CY, Chen WC, Polymer, 44(3), 593 (2003) 
  8. Giannelis EP, Adv. Mater., 8, 29 (1996) 
  9. Lee CR, Ihn KJ, Gong MS, Polym.(Korea), 27(4), 392 (2003)
  10. Pukanszky B, Fekete E, Adv. Polym. Sci., 139, 109 (1999)
  11. Zhang MQ, Rong MZ, Friedrich K, "Processing and Properties of Nonlayered Nanoparticle Reinforced Thermoplastic Composites", in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, H. S. Nalwa, Editor, American Scientific Publishers, Stevenson Ranch, 2, 113 (2003)
  12. Mourey TH, Miller SM, Wesson JA, Long TE, Kelts LW, Macromolecules, 25, 45 (1992) 
  13. Morikawa A, Yamaguchi H, Kakimoto M, Imai Y, Chem. Mater., 6, 913 (1994) 
  14. Percy MJ, Barthet C, Lobb JC, Khan MA, Lascelles SF, Vamvakaki M, Armes SP, Langmuir, 16(17), 6913 (2000) 
  15. Ji X, Hu Q, Chem. Mater., 15, 3656 (2003) 
  16. Posthumus W, Magusin PCMM, Brokken-Zijp JCM, Tinnemans AHA, van der Linde R, J. Colloid Interface Sci., 269(1), 109 (2004) 
  17. Huang ZH, Qiu KY, Polymer, 38, 521 (1996) 
  18. Sakai H, Imamura Y, Chem. Soc. Japan, 53, 1749 (1980) 
  19. Moller K, Tamazawa J, Ford WT, Chem. Mater., 10, 1841 (1998) 
  20. Lu GT, Huang Y, J. Mater. Sci., 37(11), 2305 (2002) 
  21. Kim LJ, Yoon HG, Lee SS, Kim Jk, Polym.(Korea), 28(5), 391 (2004)