화학공학소재연구정보센터
Macromolecular Research, Vol.12, No.4, 374-378, August, 2004
Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment
E-mail:
The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electrospinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1%, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electrospun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.
  1. Langer R, Vacanti JP, Science, 260, 920 (1993) 
  2. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP, Polymer, 35, 1068 (1994) 
  3. Nam YS, Yoon JJ, Park TG, J. Biomed. Mater. Res. (Applied Biomaterials), 53, 1 (2000) 
  4. Biomaterials, 17, 1417 (1996) 
  5. Harris LD, Kim BS, Mooney DJ, J. Biomed. Mater. Res., 42, 396 (1998) 
  6. Whang K, Thomas CH, Healy KE, Nuber G, Polymer, 36(4), 837 (1995) 
  7. Mo XM, Xu CY, Kotaki M, Ramakrishna S, Biomaterials, 25, 1883 (2004) 
  8. Ma PX, Zhang R, J. Biomed. Mater. Res., 46, 60 (1999) 
  9. Hartgerink JD, Beniash E, Stupp SI, Proc. Natl. Acad. Sci. USA, 8, 5133 (2002) 
  10. Yan X, Liu G, Liu F, Zhang B, Peng H, Pakhomov AB, Wong CY, Angew. Chem.-Int. Edit., 40, 3593 (2001) 
  11. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999) 
  12. Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3, 232 (2002) 
  13. Doshi J, Reneker DH, J. Electrost., 35, 151 (1995) 
  14. Bhattarai SR, Bhattarai N, Yi HK, Whang PH, Cha DI, Kim HY, Biomaterials, 25, 2595 (2004) 
  15. Yoshimato H, Shin YM, Terai H, Vacanti JP, Biomaterials, 245, 2077 (2003) 
  16. Son WK, Youk JH, Park WH, Biomacromolecules, 5, 197 (2004) 
  17. Wnek GE, Carr ME, Simpson DG, Bowlin GL, Nano Letter, 3, 213 (2003) 
  18. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X, J. Control. Release, 92, 227 (2003) 
  19. Jin H-J, Chen J, Karageorgiou V, Altman GH, Kaplan DL, Biomaterials, 25, 1039 (2004) 
  20. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B, Polymer, 43(16), 4403 (2002) 
  21. Huang YP, Woo EM, Polymer, 43(25), 6795 (2002) 
  22. Zong X, Ran S, Kim KS, Fang D, Hsiaoa BS, Chu B, Biomacromolecules, 4, 416 (2003) 
  23. Steinbuchel A, Fuchtenbusch B, Trends Biotechnol., 16, 419 (1998) 
  24. Taylor GI, Proc. Roy. Soc. London, A313, 453 (1969)
  25. Kang IK, Ito Y, Sisido M, Imanishi Y, J. Biomed. Mater. Res., 23, 223 (1989) 
  26. Buchko CJ, Chen LC, Shen Y, Martin DC, Polymer, 40(26), 7397 (1999) 
  27. Ma PX, Choi JW, Tissue Eng., 7, 23 (2001) 
  28. Woo KM, Chen VJ, Ma PX, J. Biomed. Mater. Res., 67A, 531 (2003)