화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.4, 556-559, August, 2000
Pullulan 생합성에 대한 통기와 교반의 영향
Effect of Aeration and Agitation Rates on Pullulan Production
E-mail:
초록
Pullulan 생합성에 대한 통기와 교반의 영향에 대하여 알아보고자 Aureobasidium pullulan GM21을 이용하였다. 통기속도를 0.5, 1.0, 1.5 vvm으로 증가시켰을 때 pullulan의 최대 비생산속도는 0.022-0.082(hr-1)로 변화하였고, 최대 비성장속도는 0.020-0.25(hr-1)로 변화하였다. 25℃, 1.5 vvm, 500 rpm으로 배양하였을 때 sucrose의 최대 전환 수율은 약 76%(38.29 g/L)이었다. 균체성장과 pullulan 생합성에 대한 교반의 효과는 1.5 vvm에서 교반속도를 200, 500, 900 rpm으로 변화시켜가면서 연구하였다. 균체성장은 500 rpm일 때가 가장 좋게 나타났다. 교반속도를 900 rpm으로 증가시켜도 pullulan의 생산량은 증가하지 않았다. 고농도 sucrose에 의한 기질저해효과를 극복하기 위해서 유가식 배양을 하였다. Sucrose가 감소하는 시기에 반연속적으로 기질을 공급함으로써 57.15 g/L 의 pullulan을 생산할 수 있었다.
The effects of aeration and agitation rates on the production of pullulan with Aureobasidium pullulans GM21 were studied. When it was cultured in jar fermentor at 25℃, 1.5 vvm, and 500 rpm, maximum conversion yield of sucrose into pullulan was about 76%(38.29 g/L). As increase in the aeration rates 0.5, 1.0, and 1.5 vvm, at 500 rpm, the maximum specific production rates of pullulan were increased from 0.022 to o.o82 (hr-1, and the maximum specific growth rates of cell from 0.20 to 0.25(hr-1). The effect of agitation rate on the cell growth and pullulan production was investigated by changing the agitation rates 200,500, and 900 rpm at 1.5 vvm. 500 rpm was the most sufficient for the cell growth, but the pullulan was not more produced at 900 rpm. To overcome the inhibitory effect of the high sucrose concentration, fed-batch fermentation was introduced. By using fed-batch fermentation with two-intermittent additions of sucrose, 59.26 g/L of the pullulan was produced.
  1. Bender H, Wallenfels K, Biochem. Z., 334, 79 (1961)
  2. Wiley BJ, Ball DH, Arcidiacono SM, Sousa S, Mayer JM, Kaplan DL, J. Environ. Polym. Deg., 1, 3 (1993) 
  3. Catley BJ, "Pullulan Synthesis by Aureobasidium pullulans in Microbial Polysaccharide and Polysaccharases," Academic Press, London, 69 (1979)
  4. Elionv NP, Matveeva AK, Extracellular Glucan Produced Aureobasidium pullulans Biokhimiya, 37, 255 (1972)
  5. Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM, Biotechnol. Bioeng., 3, 129 (1989) 
  6. HPLC Applications, Macherey-Nagel, 254 (1993)
  7. Wiley BJ, Arcidiacono S, Sousa S, Mayer JM, Kaplan DL, "Control of Molecular Pullulan Produced by the Fungus Aureobasidium pullulans," NATICK/TR-88/012-order No.AD-A191040, 29 (1987)