화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.4, 485-490, August, 2000
콜로이드 현택액의 Dead-End 막여과에서 용액의 이온화세기가 투과플럭스에 미치는 영향
The Influence of Solution Ionic Strength on the Permeate Flux during Dead-End Membrane Filtration of Colloidal Suspensions
E-mail:
초록
콜로이드입자들의 케이크층(cake layer)형성에 의한 막오염(membrane fouling)메케니즘을 이해하고자, fully retentive dead-end 막여과에서 투과플럭스를 여과 시간의 진행에 따라 모니터링 하였다. 모델 콜로이드론느 입자 표면이 음(-)전하로 하전된 폴리스타이렌 라텍스를, 모델 멤브레인으로서 비대칭형 막기공을 갖는 평판형 한외여과막을 선정하였고, 이들의 표면이 갖는 입자-막표면간의 물리화학적 상호작용에 중요하게 관계되는 제타전위도 측정하였다. 막 양쪽의 압력차이(transmembrane pressure difference)인 Δp가 클수록, 용액 이온화세기(solution ionic stength)가 낮을수록 투과플럭스는 크게 나타났다. 또한 Δp가 작아질수 투과플럭스에 대한 용액 이온화세기의 영향이 증가함을 볼 수 있었다. Δp가 4 psi일 때 KCI 0.01mM에서의 투과플럭스에 대한 KCI 100mM에서의 투과플럭스 감소율이 약 16%에 이르는 것으로 나타났다. 비케이크저항(spceific cake resistance)과 케이크층의 압축률(compressibility)산출에서 용액 이온화세기가 감소하면 비케이크 저항은 낮아지고 압축성은 증가하는 것으로 확인되었다. 이 현상은 라텍스 입자 주위의 확장된 전기이중층(electric double layer)으로 인해 입자들간의 먼거리(long-range)콜로이드상호작용인 정전반발력(electrostatic repulsion)이 켜져서 공극률(void fraction)이 큰 케이크층이 형성되는 것으로 해석되었다.
The permeate flux of fully retentive dead-end ultrafiltration has been monitored with progress of filtration time, so as to understand a membrane fouling mechanism due to the consistent formation of cake layer. We selceted the polystyene latex with negatively charged surfaces as well as the flat membrane having asymmetric pores as a model colloid and a model membrane, respectively, and their zeta potentials incorporated wih a physicochemical interaction betweem particle and membrane surface were characterized. As the transmembrane pressure difference(i.e.,Δp) increases, the permeate flux increases, while it shows a decreasing behavior with the increase of solution ionic strength. Note that the effect of solution ionic strength on the permeate flus is found to increase, as Δp decreases. When Δp is 4 psi, the permeate flux at KCI 100 mM decreased by about 16% compared to the flux at KCI 0.01 mM. It is obvious that, as the solution ionic strength decreases, the estimated specific cake resistance decreases, but the cake compressibility increases. This phenomena allow us to analyze the long-range electrostatic interaction between pairs of suspended latexparticles, in which the expanded double layer around particel surfaces due to a decreasing solution ionic stength provides the development of loosely packed cake layer during the membrane filtration.
  1. Nakao S, J. Membr. Sci., 96(1-2), 131 (1994) 
  2. Mulder M, "Basic Principle of Membrane Technology," Kluwer Academic Publishers, Dordrecht (1996)
  3. Cheryan M, "Ultrafiltration and Microfiltration, Handbook," Technomic, Lancaster, PA (1998)
  4. Davis RH, Sep. Purif. Methods, 21, 75 (1992)
  5. Belfort G, Davis RH, Zydney AL, J. Membr. Sci., 96(1-2), 1 (1994) 
  6. Faibish RS, Elimelech M, Cohen Y, J. Colloid Interface Sci., 204(1), 77 (1998) 
  7. Bowen WR, Calvo JI, Hernandez A, J. Membr. Sci., 101(1-2), 153 (1995) 
  8. Wijmans JG, Nakao SI, Smolders CA, J. Membr. Sci., 40, 149 (1989) 
  9. vandenBerg GB, Smolders CA, Desalination, 77, 101 (1990)
  10. Song LF, J. Membr. Sci., 139(2), 183 (1998) 
  11. Iritani E, Nakatsuka S, Aoki H, Murase T, J. Chem. Eng. Jpn., 24, 177 (1991) 
  12. Mukai Y, Iritani E, Murase T, J. Membr. Sci., 137(1-2), 271 (1997) 
  13. Causserand C, Nystrom M, Aimar P, J. Membr. Sci., 88(2-3), 211 (1994) 
  14. Lee SY, Chun MS, Kim JJ, HWAHAK KONGHAK, 38(2), 173 (2000)
  15. Rushton A, Ward AS, Holdich RG, "Solid-Liquid Filtration and Separation Technology," VCH, New York (1996)