화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.264, No.2, 481-489, 2003
Spreading of aqueous SDS solutions over nitrocellulose membranes
Experimental investigations were carried out on the spreading of small drops of aqueous SDS solutions over dry thin porous substrates (nitrocellulose membranes) in the case of partial wetting. The time evolution was monitored of the radii of both the drop base and the wetted area inside the porous substrate. The total duration of the spreading process was subdivided into three stages: the first stage: the drop base expands until the maximum value of the drop base is reached, the contact angle rapidly decreases during this stage; the second stage: the radius of the drop base remains constant and the contact angle decreases linearly with time; the third stage: the drop base shrinks and the contact angle remains constant. The wetted area inside the porous substrate expends during the whole spreading process. Appropriate scales were used with a plot of the dimensionless radii of the drop base, of the wetted area inside the porous substrate and the dynamic contact angle on the dimensionless time. Our experimental data show: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports our conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates. (C) 2003 Elsevier Inc. All rights reserved.