화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.5, 821-826, October, 1998
이산화탄소의 수소화 반응에서 메탄올 수율을 높이기 위한 2단게 수소화 반응
Two-Stage Strategy to Improve Methanol Yield in the Carbon Dioxide Hydrogenation Reaction
초록
이산화탄소를 2단계 접촉수소화 반응시켜 메탄올의 수율을 높이려는 연구를 하였다. 1st- stage에서는 Cu/ZnO/Al2O3,Fe2O3 /Cr2O3,혹은 MoS2/TiO2 촉매를 이용하여 역수성가스 반응을수행하여 CO2를 CO로 전환하였으며 ,2nd-stage에서는 상업화된 메탄올 합성 촉매인 Cu/ZnO/Al2O3를 이용하여 메탄올 합성을 시도하였다. 2단계 이산화탄소의수소화 반응시 역수성가스 반응에서 생성된 CO가 메탄올 합성 반응에 크게 기여했으며,이로 인해 메탄올 수율이 향상되었다. 특히, 1단계 수소화 반응의 경우와 비교해 보았을 때 2단계 메탄올 합성 반응의 경우 2-3배의 수율 향상을 얻을 수 있었다. 또한 이산화탄소의 2단계 수소화 반응에서 메탄올 수율은 반응가스 조성비(H2/CO2)가 4일때 제일 높게 나타났다. 이산화탄소의 2단계 수소화 반응에서 메탄올의 수율을 높이기 위해서는 lst-stage의 역수성가스 반응촉매에서 CO2를CO로 많이 전환시켜야하며, 반응기에 유입되는 반응물의 조성(H2/CO2)은 lst-stage를 거친가스의 조성이 상업적인 반응물의 조성에 근접하도록 만들어야 한다는 결론을 얻었다.
A two-stage CO2 hydrogenation reaction was conducted to increase methanol yield. At 1st-stage, CO2 was converted to CO by reverse water-gas shift reaction with Cu/ZnO/Al2O3, Fe2O3/Cr2O3, or MoS2 /TiO 2 catalysts, then at 2nd- stage, methanol was synthesized by a commercial methanol synthesis catalyst, Cu/ZnO/Al2 O3. In the case of two-stage CO2 hydrogenation reaction, CO which was produced by 1st-stage reverse water-gas shift reaction contributed to the methanol synthesis and increased the methanol yield. In particular, for the two-stage CO 2 hydrogenation reaction, methanol yield was two or three times higher than single-stage's one. In the two-stage CO2 hydrogenation reaction, the highest methanol yield was obtained when H2/CO2 ratio was 4. Finally, to increase the methanol yield the more CO2 should be converted to CO in the 1st-stage, and the feed gas ratio of the 1st-stage should be adjusted, so the effluent gas composition of the 1st-stage becomes to be close to the composition of commercial processes.
  1. Aresta M, Forti G, "Carbon Dioxide as a Source of Carbon," NATO ASI Series, C206 (1986)
  2. Ayers WM, "Catalytic Activation of Carbon Dioxide," ACS Symposium Series, 362 (1988)
  3. Halmann MM, "Chemical Fixation of Carbon Dioxide: Method for Recycling CO2 into Useful Products," CRC Press, 1 (1993)
  4. MacDongall LA, Catal. Today, 8, 337 (1991) 
  5. Kung HH, Catal. Rev.-Sci. Eng., 22, 235 (1980)
  6. Klier K, Adv. Catal., 31, 243 (1980)
  7. Sneeden RPA, Bart JCJ, Catal. Today, 2, 1 (1987) 
  8. Kieffer R, Ramaroson E, Deluzarche A, Trambouze Y, React. Kinet. Catal. Lett., 16, 207 (1981) 
  9. Tranbouze Y, Bardet R, Carzet JT, J. Chem. Phys., 18, 135 (1981)
  10. Chinchen GC, Momsfield K, Spencer MS, Chemtech., 692 (1990)
  11. Stiles AB, "Catalyst Manufacture," Dekker, 127 (1983)
  12. Halmann MM, "Chemical Fixation of Carbon Dioxide Method for Recycling CO2 into Useful Products," CRC Press, 46 (1993)
  13. Liu G, Willcox D, Garland M, Kung HH, J. Catal., 90, 139 (1984) 
  14. Vedage GA, Pitchai R, Herman RG, Klier K, "Proceedings, 8th International Congress on Catalysis,", 2, 47 (1984)
  15. Dominguez JM, Simmons GW, Klier K, J. Mol. Catal., 20, 218 (1984)
  16. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, J. Catal., 56, 407 (1979)