화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.6, 779-786, October, 2003
활성탄의 구조적 특성에 따른 공기-아연전지의 방전용량
Discharge Capacity of Zn-air Battery According to the Structure of Activated Carbon
E-mail:
초록
활성탄의 구조적 특성 및 촉매에 따른 공기-아연전지의 방전용량 특성을 공기전극의 구성요소를 중심으로 조사하였다. 공기-아연전지의 방전용량은 활성탄의 비표면적과 기공부피가 증가함에 따라 증가하였다. 또한 촉매 MnO2의 량에 대한 활성탄소의 혼합량이 증가 할수록 방전용량이 증가하였으며 상대적으로 impedence는 감소되었다. 환원 촉매로서 MnO2는 CMD(chemical manganese dioxide)가 EMD(electrolytic manganese dioxide)보다 우수한 방전특성을 나타내었으며 도전재는 kJ-black이 acetylene black에 비하여 우수한 방전용량을 보였고 도전재의 함량은 10 wt%, Binder로서 PTFE의 함량은 5 wt%에서 방전용량이 커짐을 보였다. 그리고 활성탄과 촉매의 혼합비는 MnO2의 량에 대한 중량비로서 1.86일 때 가장 큰 용량을 나타내었다. 이러한 조건하에서 비표면적 3000 m2/g의 활성탄을 사용하였을 때 공기아연전지의 방전용량은 632 mAh를 나타내었다.
This study was to investigated effect of the structure of activated carbon on the discharge capacity of Zn-air battery. The relationship between various compositional materials and electrochemical characteristics of Zn-air battery was also examined. The results show that the discharge capacity was increased as the specific surface area and pore volume of activated carbon were increased. The compositions of activated carbon and MnO2 were also important parameters for the discharge capacity. An air electrode with CMD as the oxygen reduction catalyst showed a higher discharge capacity than an electrode with EMD. KJ-black was better than acetylene black as a conducting material and the optimal content was 10 wt%. As a binder, the optimal content of PTFE was 5 wt%. The compositional ratio of activated carbon to MnO2 was 1.86. The zinc-air battery prepared under the above mentioned condition with the activated carbon of 3000 m2/g resulted 632 mAh as the discharge capacity.
  1. Schiffer SF, Handbook of Batteries and Fuel Cells, ed. D. Linder, 89, McGraw-Hill Book Co., New York (1984)
  2. Evans JW, Savaskan G, J. Appl. Electrochem., 21(2), 105 (1991) 
  3. Gregory DP, Metal-Air Batteries, 114, Mills & Boon Limited, London (1972)
  4. Appelt K, Malanoswski L, J. Power Sources, 4, 91 (1979) 
  5. Mao Z, White RE, J. Electrochem. Soc., 139, 1105 (1992) 
  6. Periyasamy P, Jegannathan S, Murlidharan S, Trans. Soc. Adv. Electrochem. Sci. Technol., 27, 191 (1957)
  7. Sunu WG, Bennion DN, J. Electrochem. Soc., 127(9), 2007 (1980) 
  8. Isaacson MJ, J. Electrochem. Soc., 137, 2014 (1990) 
  9. Miller KG, Abstract 6, 8, Aluminum-Air Battery Development for Underwater Use, The electrochemical Society Extended Abstracts, Chicago, Illinois, Oct. 9-14 (1988)
  10. Tuck CDS, Modern Battery Technology, 160, Ellis Horwood, London (1991)
  11. Monita Y, Yojoyama T, National Technical Report, 37, 38 (1991)
  12. Preisler E, J. Appl. Electrochem., 6, 301 (1976) 
  13. Monita Y, Konish H, National Technical Report, 32, 62 (1986)