화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.15, No.3, 151-156, September, 2003
Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions
E-mail:
In this research, experimental studies were performed to examine the rheological behavior of equimolar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) solutions with concentration. The surfactant solutions were prepared by dissolving 2 mM/2 mM- 80 mM/80 mM of surfactant/counterion in double-distilled water. It has been observed that the zero shear viscosity shows abrupt changes at two critical values of C* and C**. These changes are caused by the switching of relaxation mechanism with concentration of CPyCl/NaSal solutions at those concentrations. The wall slip velocities of dilute and semidilute CPyCl/NaSal solutions show a dramatic increase with shear rate where the shear viscosity exhibits shear thickening behavior for dilute solutions and shear thinning behavior for semi-dilute solutions, respectively. Considering that the dramatic increase in wall slip velocity should be related to the formation of shear-induced structure (SIS) in the surfactant solution, the shear thickening behavior of semi-dilute solutions is caused by elastic instability unlike the case of dilute solutions.
  1. Boltenhagen P, Hu Y, Matthys EF, Pine DJ, Phys. Rev. Lett., 79, 2359 (1998) 
  2. Cates ME, ACS Symp. Ser., 578, 32 (1994)
  3. Cates ME, Candau SJ, J. Phys., 2, 6869 (1990)
  4. Cates ME, Macromolecules, 20, 2289 (1987) 
  5. Hoffmann H, ACS Symp. Ser., 578, 2 (1994)
  6. Hu H, Larson RG, Magda JJ, J. Rheol., 46(4), 1001 (2002) 
  7. Hu YT, Boltenhagen P, Pine DJ, J. Rheol., 42(5), 1185 (1998) 
  8. Hu YT, Boltenhagen P, Matthys E, Pine DJ, J. Rheol., 42(5), 1209 (1998) 
  9. Kadoma IA, Vanegmond JW, Langmuir, 13(17), 4551 (1997) 
  10. Kim C, Sung K, Rheological Behavior of Cationic Surfactant Solutions, Proc. of Kor Soc. Rheol. Spring Annual Meeting, Taejeon, 93-96, May (2002)
  11. Kim WJ, Yang SM, Langmuir, 16(11), 4761 (2000) 
  12. Larson RG, The Structure and Rheology of Complex Fluides, Oxford Univ PRess, New York (1999)
  13. Lequeux F, Europhys. Lett., 19, 675 (1992)
  14. Lin Z, Mateo A, Kesselman E, Pancallo E, Hart DJ, Talmon Y, Davis TH, Scriven LE, Zakin J, Rheol. Acta, 41, 483 (2002) 
  15. Lin ZQ, Lu B, Zakin JL, Talmon Y, Zheng Y, Davis HT, Scriven LE, J. Colloid Interface Sci., 239(2), 543 (2001) 
  16. Liu CH, Pine DJ, Phys. Rev. Lett., 77, 2121 (1996) 
  17. Narayanan J, Urbach W, Langevin D, Manohar C, Zana R, Phys. Rev. Lett., 81, 228 (1998) 
  18. Rehage H, ACS Symp. Ser., 578, 63 (1994)
  19. Rehage H, Hoffmann H, Mol. Phys., 74, 933 (1991) 
  20. Rehage H, Hoffmann H, Rheol. Acta, 21, 561 (1982) 
  21. Reif I, Mulqueen M, Blankschtein D, Langmuir, 17(19), 5801 (2001) 
  22. Roux DC, Berret JF, Porte G, Peuvreldisdier E, Lindner P, Macromolecules, 28(5), 1681 (1995) 
  23. Shikata T, Shiokawa M, Itatani S, Imai SI, Korea-Aust. Rheol. J., 14(3), 129 (2002)
  24. Tschoegl NW, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer, Berlin (1989)
  25. Wheeler EK, Fischer P, Fuller GG, J. Non-Newton. Fluid Mech., 75(2-3), 193 (1998) 
  26. Yoshimura A, Prudhomme RK, J. Rheol., 32, 53 (1988) 
  27. Zana R, Adv. Colloid Interface Sci., 97, 205 (2002)