화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.3, 365-370, May, 2003
다양한 기능성 도판트로 도핑된 가용성 폴리피롤의 용매화 효과 및 특성
Solvent Effect and Characterization of Soluble Polypyrrole Doped with Various Functional Dopants
E-mail:
초록
극성 작용기와 비극성 작용기를 동시에 갖는 기능성 도판트인 sodium di(2-ethylhexyl) sulfosuccinate (DEHSNa), sodium dioleylsulfosuccinate (DOSNa), sodium butylnaphthalenesulfonate (BNSNa)을 사용하여 극성 용매(DMSO, DMF, NMP 등)와 비극성 용매(클로로포름, dichloromethane 등)에 가용성인 폴리피롤(Ppy-DEHS, Ppy-DOS, Ppy-NBS)을 합성하였다. 극성 작용기로 도핑된 가용성 Ppy-DEHS 분말의 용해도는 상대적으로 비극성 용매보다( ~ 6 wt%/vol.) 극성 용매에서( ~ 11 wt%/vol.) 더 높게 나타났고, 이들 용매로부터 제조된 필름의 전기전도도도 또한 극성 용매에서 제조된 필름이(4 S/cm)비 극성 용매에서 제조된 필름보다 (2 x 10-2 S/cm) 더 높게 나타났다. 그러나, 비극성 작용기를 갖는 도판트로 도핑된 가용성 Ppy-DOS, Ppy-BNS의 경우, 상대적으로 비극성 용매인 클로로포름내에서 용해도가(6 ~ 9 wt%/vol.)극성용매 (DMSO, DMF etc. 3 ~ 4 wt%/vol.)인 경우보다 높게 나타났다. 다양한 유기용매에서 제조된 Ppy-DEHS, Ppy-DOS, Ppy-NBS 필름의 전하전달은 모두 3차원 VRH model{σdc(T) = σo exp[-(To/T)1/4]}에 부합하였다.
Polypyrroles (Ppy-DEHS, Ppy-DOS, Ppy-BNS, etc.) soluble in polar (DMSO, DMF, NMP, etc.) and non-polar (chloroform, dichloromethane, etc.) organic solvents were synthesized using functional doping agents that have both polar and non polar functional groups; sodium di(2-ethylhexyl) sulfosuccinate (DEHSNa), sodium dioleylsulfosuccinate (DOSNa), and sodium butylnaphthalenesulfonate (BNSNa). Soluble Ppy-DEHS powder doped with polar functional group dopant showed a higher solubility in polar solvent ( ~ 11 wt%/vol.) than in non polar solvent ( ~ 6 wt%/vol.). Free standing film (4 S/cm) cast from polar solvent showed a higher electrical conductivity than that cast from non polar solvent (2 x 10-2 S/cm). Soluble Ppy-DOS and Ppy-BNS powders doped with non polar functional group dopant showed a higher solubility in non polar solvent (chloroform, 6 ~ 9 wt%/vol.) than in polar solvent (DMSO, DMF etc. 3 ~ 4 wt%/vol.). For the Ppy-DEHS, Ppy-DOS and Ppy-BNS films cast from various organic solvents, Three Dimensional Various Range Hopping model (3D VRH ; {σdc(T) = σo exp[-(To/T)1/4]}) was used to fit the results of temperature dependence of electrical conductivity measurement.
  1. Joo J, Lee JK, Lee SY, Jsng KS, Oh EJ, Epstein AJ, Macromolecules, 33(14), 5131 (2000) 
  2. Diaz MA, Schwartz BJ, Anderson MR, Heeger AJ, Synth. Met., 84, 455 (1997) 
  3. Oh EJ, Jang KS, Suh JS, Synth. Met., 84, 147 (1997) 
  4. Lee JY, Kim DY, Kim CY, Mol. Cryst. Liq. Cryst., 253, 83 (1995)
  5. Macdiarmid AG, Epstein AJ, Synth. Met., 69, 85 (1995) 
  6. Macdiarmid AG, Heeger AJ, Synth. Met., 84, 131 (1997) 
  7. Yin WS, Liu CG, Li J, Liu HW, Gu TR, J. Appl. Polym. Sci., 65(1), 1 (1997) 
  8. Bay L, Mogensen N, Skaarup S, Sommer-Larsen P, Jorgensen M, West K, Macromolecules, 35(25), 9345 (2002) 
  9. Collard DM, Stoakes MS, Chem. Mater., 6, 850 (1985) 
  10. Audebert P, Bidan G, Lapkowski M, Electronic Properties of Conjugated Polymers, D.A. Seanor, Academic Press, New York, 366 (1987)
  11. Lee JY, Kim DY, Synth. Met., 74, 103 (1995) 
  12. Kim DY, Lee JY, Kim CY, Kang ET, Tan KL, Synth. Met., 72, 243 (1995) 
  13. Oh EJ, Jang KS, Synth. Met., 119, 107 (2001) 
  14. Jang Ks, Han SS, Suh JS, Oh EJ, Synth. Met., 119, 109 (2001) 
  15. Oh EJ, Jang Ks, Macdiarmid AG, Synth. Met., 125, 267 (2002)
  16. Macdiarmid AG, Epstein AJ, Synth. Met., 65, 103 (1994) 
  17. Street GB, Clarke TC, Krounbi M, Kanaza K, Mol. Cryst. Liq. Cryst., 83, 253 (1982)
  18. Song KT, Lee JY, Kim HD, Kim DY, Kim SY, Kim CY, Synth. Met., 110, 57 (2000) 
  19. Joo J, Lee JK, Oh EJ, Epstein AJ, Synth. Met., 117, 45 (2001) 
  20. Lee JK, Joo J, Jang KS, Oh EJ, Song SG, Saemulli, 38, 6 (1998)