화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.3, 307-312, May, 2003
생분해성을 가지는 Pullulan/Poly(vinyl alcohol) 블렌드의 상용성 및 물성에 관한 연구
Studies on the Miscibility and Properties of Biodegradable Polymer Blends of Pollulan and Poly(vinyl alcohol)
E-mail:
초록
포장용 범용 플라스틱의 사용 후 처리 문제와 생분해성 고분자 재료의 높은 가격 문제를 동시에 해결할 수 있는 환경 친화적인 고분자 재료를 개발하고자, 미생물 유래 고분자의 하나인 pullulan과 합성 수용성 고분자인 poly(vinyl alcohol) (PVA)를 사용하여 pullulan/PVA blends를 제조하고 이들의 주요 물성들을 분석하였다. 다양한 구성비를 갖는 pullulan/PVA blends를 물을 용매로 한 용액 blending 방법을 사용하여 제조하였다. 제조된 blends의 상용성과 열적 성질 및 기계적 성질은 시차주사열량분석기, 시차주사전자현미경과 적외선분광분석기 및 인장시험기 등을 사용하여 분석하였으며 토양매립시험으로 blends의 생분해성을 관찰하였다. 그 결과, pullulan/PVA blends는 전 조성에 걸쳐 Fox 식에 따르는 하나의 유리전이온도를 보이는 우수한 상용성을 나타냄을 알 수 있었다. 또한 pullulan의 함량이 증가함에 따라 blends의 융점과 분해온도는 일정하게 감소하였으며 기계적 강도는 pullulan 함량이 증가할수록 향상되었고 생분해성 또한 크게 증가함을 알 수 있었다.
In order to overcome the disposal problem of commodity plastics used in packaging and high costs of biodegradable polymers, environmentally friendly blends of microbially synthesized pullulan and water soluble poly(vinyl alcohol) (PVA) polymers were prepared and their properties were investigated. Pullulan/PVA blends with various weight ratios were prepared using a solution blending system with water as the solvent, DSC, SEM, FT-IR spectroscopy, UTM, and soil burial composting test were respectively used to investigate the miscibility, thermal properties, mechanical properties, and biodegradability of blends. From these analyses, it was discovered that pullulan/PVA blends showed a unique Tg value that agreed well with the theoretical value calculated from Fox aquation. Therefore, it was concluded that pullulan/PVA blends showed a completely miscible system. In addition, with increased pullulan content in the blends, Tm and Td values of pollulan/PVA blends decreased, however, the biodegradability and mechanical properties increased dramatically.
  1. Huang SJ, Biodegradation in Comprehensive Polymer Science, Vol. 6, Chap. 21, G.C. Eastmond, Pergamon Press, Great Britain (1989)
  2. Kaplan D, Wiley BJ, Mayer JM, Ancidiacono J, Keith J, Lombardi S, Ball D, Microbial Generated Polysaccharides, Technical Report, Natick/TR-88/012, 1 (1987)
  3. Doi Y, Kanesawa Y, Kunioka M, Macromolecules, 23, 26 (1990) 
  4. Bejuki WM, Encycl. Polym. Eng. Sci., 2, 221 (1989)
  5. Shin PK, Polym. Sci. Technol., 10(2), 207 (1999)
  6. Bernier B, Can. J. Microbiol., 4, 195 (1958)
  7. Merdinger J, J. Bacteriol., 98, 1021 (1969)
  8. Reese ET, Maguire A, Can. J. Microbiol., 17, 329 (1971)
  9. Boa JM, Jacques M, LeDuy A, Biotechnol. Bioeng., 30, 463 (1984) 
  10. Donabedian DH, Plasticization, Chemical Modification and Graft Copolymerization of Pullulan, Ph.D. Dissertation, U. Lowell, U.S.A. (1994)
  11. Yuen S, Chem. Eng. News, 40, 24 (1973)
  12. Yuen S, Process Biochem., 22, 7 (1974)
  13. Sakano Y, Masuda N, Kobayashi T, Agric. Biol. Chem., 35, 971 (1973)
  14. Ohta K, Mitsuyuki H, Miyamato H, Kawahara K, Kobunshi Ronbunshu, 42, 817 (1985)
  15. Bruneel D, Schact E, Polymer, 34, 2633 (1993) 
  16. Bruneel D, Schact E, Polymer, 34, 2628 (1993) 
  17. Li ZC, Fu ZF, Hwang MZ, Lian N, J. Macromol. Sci.-Chem., A25(12), 1487 (1988)
  18. Brandrup J, Immergut EH, Polymer Handbook, Chap. 3, 2nd ed., John Wiley & Sons, New York, U.S.A. (1975)
  19. Hayashibara Biochem. Lab., Technical Report, No. MPU1-95-12 (1995)
  20. ASTM D5526-94, Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials under Accelerated Landfill Conditions, Annual Book of ASTM Standards, Vol. 08-03, American Society for Testing and Materials, Philadelphia, U.S.A. (1994)
  21. Fox TG, Bull. Am. Phys. Soc., 1, 123 (1956)
  22. Deanin RD, Polymer Structure, Properties and Applications, The Maple Press Co., Pennsylvania, U.S.A. (1972)
  23. Flory PJ, Principles of Polymer Chemistry, 1st ed., George Banta Co. Inc., Wisconsin, U.S.A. (1971)