화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.1, 23-28, February, 2003
충전재-탄성체 상호작용. 7. 카본블랙/고무 복합재료의 표면특성과 접착 특성에 미치는 코로나 방전 처리의 영향
Filler-Elastomer Interactions. 7. The Effect of Corona Discharge Treatment on Surface Properties and Adhesion Characteristics of Carbon Black/Rubber Composites
E-mail:
초록
본 연구에서는 코로나 방전 처리에 의한 카본블랙/고무 복합재료와 코로나 처리 후 아크릴산 그래프트시킨 복합재료의 표면특성은 X-ray photoelectron spectroscopy (XPS)와 접촉각 측정을 통하여 알아보았으며, 복합재료의 접착특성은 박리접착강도(peel strength)를 측정하여 관찰하였다. 본 실험결과 코로나 처리에 의해 복합재료 표면에 산소를 함유한 극성관능기가 발달하여 표면자유에너지가 증가하였으며, 결과적으로 복합재료의 접착 특성인 박리접착강도가 증가한 것을 확인할 수 있었다. 또한 코로나 처리 후 아크릴산으로 그래프트시킨 복합재료의 경우 코로나 처리한 복합재료에 비하여 낮은 표면활성과 박리접착강도를 나타내었다. 이러한 결과는 카본블랙/고무 복합재료의 표면관능기 또는 표면자유에너지의 변화에 의한 것을 확인 할 수 있었다.
In this work, the effects of corona discharge treatment on surface properties of carbon black/rubber composites grafted with acrylic acid were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles. The adhesion characteristics of composites were studied by measuring the peel strengths of composites. As a result, the composite surfaces treated with corona discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the carbon black/rubber composites. Also, the acrylic acid grafting on the composites treated with corona discharge showed lower surface activity and peel strength, compared to those of the corona discharge-treated composites. These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the carbon black/rubber composites.
  1. Papirer E, Lacroix R, Donnet JB, Carbon, 34, 1521 (1996) 
  2. Park SJ, Kim JS, Carbon, 39, 2011 (2001) 
  3. Lin JH, Chen HW, Wang KT, Liaw FH, J. Mater. Chem., 8, 2169 (1998) 
  4. Park SJ, Kim JS, J. Colloid Interface Sci., 244(2), 336 (2001) 
  5. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  6. Grill A, Cold Plasma in Mateirals Fabrication: Fundamentals to Applications, IEEE; ISBN: 0708347145 (1994)
  7. Foldes E, Toth A, Kalman E, Fekete E, Tomasovszky-Bobak A, J. Appl. Polym. Sci., 76(10), 1529 (2000) 
  8. Sun C, Zhang D, Wadsworth L, Adv. Polym. Tech., 18, 171 (1999) 
  9. Seto F, Fukuyama K, Muraoka Y, Kishida A, Akashi M, J. Appl. Polym. Sci., 68(11), 1773 (1998) 
  10. Lee JH, Jung HW, Kang IK, Lee HB, Biomaterials, 15, 705 (1994) 
  11. Suzer S, Argun A, Vatansever O, Aral O, J. Appl. Polym. Sci., 74(7), 1846 (1999) 
  12. Novak I, Folrian S, Polym. Int., 50, 49 (2001) 
  13. Lee JH, Lee HB, J. Biomed. Mater. Res., 41, 304 (1998) 
  14. Park SJ, Jin JS, J. Colloid Interface Sci., 236(1), 155 (2001) 
  15. Adamson AW, Physical Chemistry of Surfaces, Chap. 10, John Wiley, New York (1990)
  16. Frysz CA, Chung DDL, Carbon, 35, 1111 (1997) 
  17. Li X, Horita K, Carbon, 38, 133 (2000) 
  18. Kinloch AJ, Adhesion and Adhesives, Chapman & Hall, New York (1987)
  19. Lewis AF, Epoxy Resin: Chemistry and Technology, Marcel Dekker Inc., New York (1988)
  20. Postor-Blas MM, Martin-Martmez JM, Dillard JG, Surf. Int. Anal., 26, 385 (1998) 
  21. Sanchez-Adsuar MS, Papon E, Villenave JJ, J. Appl. Polym. Sci., 82(14), 3402 (2001)