화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.8, 765-770, December, 2002
1-Aza-15-Crown-5 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착
Adsorption of Uranium(VI) Ion on the 1-Aza-15-Crown-5 Synthetic Resin Adsorbent
E-mail:
초록
1%, 2%, 4% 및 20%의 가교도를 가진 스틸렌 디비닐벤젠 공중합체에 1-aza-15-crown-5 거대고리 리간드를 치환반응으로 결합시켜 수지들을 합성하였다. 이들 수지의 합성은 염소 함량과 원소 분석 그리고 IR-스펙트럼으로 확인하였다. 수지 흡착제에 의한 우라늄 이온의 흡착에 미치는 pH, 시간, 수지의 가교도 그리고 용매의 유전상수에 따른 영향들을 조사하였다. 우라늄 이온은 pH 3 이상에서 큰 흡착율을 보였으며, 금속 이온들의 흡착 평형은 2 h정도였다. 한편, 에탄올 용매에서 수지에 대한 흡착 선택성은 UO22+>Cu2+>Sm3+ 이온이었고, 우라늄 이온의 흡착력은 1%, 2%, 4% 및 20%의 가교도 순 이었으며, 용매의 유전상수 크기에 반비례하였다.
Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand into styrene divinylbenzene (DVB) copolymer, which contains crosslink of 1%, 2%, 4% and 20% by substitution reaction. The synthesis of these resins was confirmed by the content of chlorine, the element analysis and the IR-Spectrum. The effects of pH, time, crosslink of resins and dielectric constant of solvent on the adsorption of uranium ion by resin adsorbent were investigated. Uranium ion showed a great adsorption at pH higher than 3, and the adsorption equilibrium of metal ions was about two hours. In addition, the adsorptive selectivity of resin in ethanol solvent was UO22+>Cu2+>Sm3+ in order. The adsorption of uranium ion was 1%, 2%, 4% and 20%, which corresponded to the order of crosslink and it was inversely proportional to the order of dielectric constant of solvents.
  1. Otsuka H, Najima H, Takagi M, Ueno K, Anal. Chim. Acta, 147, 227 (1983) 
  2. Kim J, Ahn TH, Lee MR, Cho MH, Kim SJ, J. Korean Chem. Soc., 43, 167 (1999)
  3. Kim J, Yoon CJ, Yoo HJ, Kim SJ, J. Korean Chem. Soc., 39, 312 (1995)
  4. Lindoy LF, Lip HC, Rea JH, Smith RJ, Henrick K, Mcpartin M, Tasker PA, Inorg. Chem., 19, 3360 (1980) 
  5. Bruening RL, Tarbet BJ, Krakowiak KE, Bradshaw JS, Anal. Chem., 63, 1014 (1991) 
  6. Kimura K, Harino H, Hayata E, Shono T, Anal. Chem., 58, 2233 (1986) 
  7. Lindoy LF, Adam KR, Bladwine DS, Bashall A, McPartlin M, Powell HR, J. Chem. Soc.-Dalton Trans., 237 (1994)
  8. Ahearn MA, Kim J, Leong AJ, Lindoy LF, Meehan GV, Mettews OA, J. Chem. Soc.-Dalton Trans., 3591 (1996)
  9. Grimslery PG, Lindoy LF, Lip HC, Smith RJ, Baker JT, Aust. J. Chem., 30, 2095 (1977)
  10. Kim CH, Hwang HL, J. Korean Chem. Soc., 43, 418 (1999)
  11. Kim MS, Lee SC, Chung JG, J. Korean Ind. Eng. Chem., 12(1), 83 (2001)
  12. Huh KS, Sin SG, J. Korean Ind. Eng. Chem., 9(5), 680 (1998)
  13. Bombieri G, Depaoli G, Inorg. Chem. Acta, 18, 123 (1976)
  14. Murakami Y, Ohono T, Steliou K, J. Am. Chem. Soc., 113, 8229 (1991) 
  15. Hayashita T, Lee JH, Chem S, Bartsch RA, Anal. Chem., 63, 1844 (1991) 
  16. Blasius E, Janzen KP, Pure Appl. Chem., 54, 2115 (1982)
  17. Blasius E, Maurer PG, Makromol. Chem., 178, 649 (1977) 
  18. Egawa H, Nonaka T, Ikari M, J. Appl. Polym. Sci., 29, 2045 (1984) 
  19. Park SK, Kim JT, J. Korean Ind. Eng. Chem., 6(6), 1004 (1995)
  20. Lee SH, Kim KR, Shon JS, Yoo JH, Chung H, J. Ind. Eng. Chem., 5(4), 296 (1999)
  21. Park SK, Kim JT, Noh GH, J. Korean Sani., 15, 77 (2000)
  22. Chung KB, Kim HH, Chang SH, J. Ind. Eng. Chem., 6(1), 8 (2000)
  23. Suh MY, Eom TY, Suh IS, Kim SJ, Bull. Korean Chem. Soc., 8, 366 (1987)
  24. Marcus Y, Introduction to Liquid State Chemistry, 250, John Wiley & Sons, London (1977)
  25. Pederson CJ, J. Am. Chem. Soc., 92, 386 (1970)