화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.7, 648-653, November, 2002
감마선 조사에 의해 제조된 키토산/아크릴산 하이드로겔의 특성
The Characteristics of Chitosan/Acrylic Acid Hydrogel Prepared by γ-ray Irradiation
E-mail:
초록
키토산(chitosan)을 아크릴산에 용해시킨 후 개시제 혹은 가교제를 필요로 하지 않는 감마선을 이용해 양물 전달용 하이드로겔을 제조하고 그 특성을 조사하였다. 키토산과 아크릴산의 조성비를 각각 0.1 ~ 1.5 wt%와 30, 50, 70 vol%로 혼합하여 30 ~ 70 KGy의 조사량으로 감마선 조사하여 제조된 하이드로겔의 겔함량은 96 % 이상이었으며, 키토산과 아크릴산의 비율이 증가할수록, 조사량이 증가할수록 99 %까지 증가하였다. 제조된 겔의 팽윤도는 키토산과 아크릴산의 비율이 증가할수록, 조사량이 증가할수록 감소하였으며, 20 h 내에서 급격히 증가하다가 서서히 평형에 도달하였다. 또한, 감마선 조사로 제조된 chitosan/AAc 겔을 pH 1 ~ 12 에서 팽윤시킨 결과, 용액의 pH가 증가 할수록 팽윤도도 증가하였으며, pH 12에서 가장 큰 값을 나타내었다. 이러한 겔의 팽윤 특성은 감마선 조사에 의해 형성된 가교결합과 이혼화된 amino기와 carboxyl기의 작용에 의한 것임을 FT-IR과 SEM 관찰로 확인할 수 있었다.
The chitosan/acrylic acid (AAc) hydrogels for drug delivery were synthesized with polymerization of acrylic acid in the presence of chitosan mitiated by gamma-ray irradiation and their characteristics were investigated. Various chitosan/AAc hydrogels were prepared with the different ratios of chitosan (0.1 ~ 1.5 wt%), acrylic acid (30, 50, 70 vol%) and radiation dose (30 ~ 70 KGy). The gel contents of hydrogels were more than 96%, and as the ratios of chitosan/acrylic acid and radiation dose were increased, it increased to 99 %. The swelling degrees of chitosan/AAc hydrogels decreased as the ratio of chitosan/acrylic acid and radiation dose increased, and reached equilibrium within 20 h. In the pH range of 1 ~ 12, chitosan/AAc hydrogels were more swollen at high pH than low pH, and showed the largest swelling occurred at pH 12. FTIR as well as SEM results indicated that the swelling characteristics of chitosan/AAc hydrogels were due to the cross-linking of ionized amino and carboxylic functional groups by gamma irradiation.
  1. Singh BN, Kim KH, J. Control. Release, 63, 235 (2000) 
  2. Peppas NA, Mikos AG, "Hydrogels in Medicine and Pharmacy," 1, 1, CRC, Boca Ranton, FL (1986)
  3. Huang Y, Leobandung W, Foss A, Peppas NA, J. Control. Release, 65, 63 (2000) 
  4. Peppas NA, Langer R, Science, 263(5154), 1715 (1994) 
  5. Majeti NV, Ravi K, React. Funct. Polym., 46, 1 (2000) 
  6. Dodane V, Vilivalam VD, PSTT, 1(6), 246 (1998)
  7. Lehr CM, Int. J. Pharm., 78, 43 (1992) 
  8. Cho CS, An JS, Choi HK, Polym. Sci. Technol., 11(4), 470 (2000)
  9. Bhattacharya A, Prog. Polym. Sci., 25, 371 (2000) 
  10. Kume T, Takehisa M, Proceedings of the Second International Conference on Chitin and Chitosan, 66, Sapporo, Japan (1982)
  11. Peppas NA, Bures P, Leobandung W, Ichikawa H, Eur. J. Pharm. Biopharm., 50, 27 (2000) 
  12. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ, J. Appl. Polym. Sci., 73(1), 113 (1999) 
  13. Wang HF, Li WJ, Lu YH, Wang ZL, Zhong W, J. Appl. Polym. Sci., 61(12), 2221 (1996) 
  14. Perezgramatges A, Arguellesmonal W, Penichecovas C, Polym. Bull., 37(1), 127 (1996) 
  15. Zhu S, Pelton RH, Hamielec AE, Eur. Polym. J., 34, 487 (1998) 
  16. Peniche C, Arguelles-Monal W, Davidenko N, Sastre R, Gallardo A, Roman JS, Biomaterials, 20, 1869 (1999) 
  17. Peppas LB, Peppas NA, Chem. Eng. Sci., 46, 715 (1991) 
  18. Yu E, Kramarenko A, Khoklov AR, Polym. Gels Networks, 6, 45 (1998) 
  19. Cerrai P, Guerra GD, Tricoli M, Maltinti S, Barbani N, Petarca L, Macromol. Chem. Phys., 197, 3567 (1996) 
  20. Chavasit V, Kienzle-Sterzer C, Torres JA, Polym. Bull., 19, 223 (1988)
  21. Argelles-Monal W, Peniche-Covas C, Makromol. Chem. Rapid Commun., 9, 693 (1988) 
  22. Moharram MA, Balloomal LS, EL-Gendy HM, J. Appl. Polym. Sci., 59, 987 (1985) 
  23. Wang HF, Li WJ, Lu YH, Wang ZL, J. Appl. Polym. Sci., 65(8), 1445 (1997) 
  24. Peniche C, Elvira C, Roman JS, Polymer, 39(25), 6549 (1998)