화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.5, 389-402, August, 2002
지방족 폴리에스테르의 생분해성에 미치는 구조 및 형태학적 영향
Structural and Morphological Effects on the Biodegradation of Aliphatic Polyesters
E-mail:
초록
생분해성 지방족 폴리에스테르는 다양한 구성 단량체로 합성되어, 폐 플라스틱에 의한 환경오염문제를 해결할 수 있는 가장 바람직한 대안으로 여겨지고 있어, 신규재료의 합성법 및 PHB, PCL, PLLA, PBS 등의 기존 생분해성 지방족 폴리에스테르의 생분해성, 기계적 물성, 가공성, 가격경쟁력 등을 향상시키려는 많은 연구가 이루어지고 있다. 이들 지방족 폴리에스테르의 생분해성이 합성에 의해 결정되는 일차구조에 의존하는 것은 잘 알려진 사실이다. 그러나 이것만으로 생분해성을 평가하는 것은 잘못된 결론을 유도할 수 있음도 잘 알려진 사실이다. 실제 생분해성 폴리에스테르가 일상생활에서 대부분 bulk한 용기, 필름 및 섬유 등의 고체상태로 사용되는데, 이러한 고체상태 고분자의 생분해성은 중합도, 작용기의 유무, 친수성/소수성의 균형 및 가교 등의 화학구조 뿐만 아니라 결정의 형태 및 크기, 결정화도, 그리고 배향의 정도 등의 형태학적 인자와 고차구조에 큰 영향을 받는다. 본고에서는 이들 형태학적 인자와 고차구조의 해석을 TEM, X-선 소각 및 광각 회절 등으로 평가하고, 생분해성과의 관계를 살펴보고자 하였다.
Aliphatic polyesters as biodegradable polymeric materials, which were prepared from various constituent monomers, are considered as the most probable counterproposal to solve the environmental pollution problem by disposal plastics. Therefore, many researchers have been carried out in terms of synthesis for new biodegradable materials by employing molecular design concept or modification of well-known aliphatic polyesters such as PHB, PCL, PLLA and PBS to improve biodegradablility, mechanical properties, processability and price competitiveness. It is well known that biodegradability of aliphatic polyesters is strongly dependent on primary structure determined by synthesis process. but in an attempt to study the effects of primary structure on biodegradation, incorrect conclusions might be drawn on the most dominant factor affecting biodegradability regardless of morphological factors and highly-ordered structure. In everyday life, most biodegradable polyesters are used in solid state such as a bulk container, films or fiber. Therefore, the biodegradability of polymers in solid state are significantly influenced by morphological factors and highly-ordered structure such as the crystal shape and size, crystallinity and molecular orientation as well as the chemical structure such as the degree of polymerization, the presence of functional groups, the hydrophilicity/hydrophobicity balance and crosslinking structure. In this paper, the morphological factor and highly ordered structure was evaluated by means of TEM and wide-/small-angle X-ray scattering, and the relationship between these factors and the biodegradability of aliphatic polyesters was examined in detail.
  1. Scheirs J, Polymer Recycling, Wiely Series in Polymer Science (1997)
  2. Huang SJ, Biodegradable Polymer in Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, 2, 220 (1985)
  3. Sudesh H, Abe H, Doi Y, Prog. Polym. Sci., 25, 1503 (2000) 
  4. Amass W, Amass A, Tighe B, Polym. Int., 47, 89 (1998) 
  5. Huang SJ, Edelonan PG, G. Scott, Gilead ed., Degradable Polymer. Principle and Application, Chapman & Hall, London, p. 18 (1995)
  6. Andrady AL, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C34, 25 (1994)
  7. Okada M, Prog. Polym. Sci., 27, 87 (2002) 
  8. Chandra R, Rustgi R, Prog. Polym. Sci., 23, 1273 (1998) 
  9. Mochizuki M, Hirami M, Polym. Adv. Technol., 8, 203 (1997) 
  10. Gruber P, Sustainable Design of Polymers and Materials, 6th International Scientific Workshop on Biodegradable Polymers and Plastics & 9th Annual Meeting of the BioEnvironmental Polymer Society (2000)
  11. ogawa S, Hiraoka S, Obuchi S, Ajioka M, Kawashima N, New Production Process of Polylactic Acid, ACEA for Sustainable Development, 6th International Scientific Workshop on Biodegradable Polymers and Plastics, Agenda & Abstract (2000)
  12. Shinno K, Miyamoto M, Kimura Y, Hirai Y, Yoshitome H, Macromolecules, 30(21), 6438 (1997) 
  13. Moon SI, Lee CW, Miyamoto M, Kimura Y, J. Polym. Sci. A: Polym. Chem., 38(9), 1673 (2000) 
  14. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y, Polymer, 42(11), 5059 (2001) 
  15. Hanzle E, Lafferty RM, J. Appl. Microbiol. Biotechnol., 11, 8 (1980) 
  16. Pedros-Alio C, Mas J, Gurrero R, Arch. Microbio. Ar25, 143(178), 576 (1985)
  17. Hori Y, Suzuki M, Yamaguchi A, Nishishita T, Macromolecules, 26, 5533 (1993) 
  18. Majerska K, Duda A, Penczek S, Macromol. Rapid Commun., 21, 1327 (2000) 
  19. Jedliski Z, Accounts Chem. Res., 32, 55 (1998)
  20. Fujimaki T, Gosei Jushi., 39, 35 (1993)
  21. Takiyama E, Fijimaki T, Plastics., 43, 87 (1992)
  22. Yamamoto M, Biodegradable Polymer : Ecoflex®-Its Properties and Applications, 7th World Conference on Biodegradable Polmers & Plastics (2002)
  23. Saito T, Iwata A, Watanabe T, J. Environ. Polym. Deg., 1, 99 (1993) 
  24. Mukai K, Yamada K, Doi Y, Int. J. Biol. Macromol., 15, 361 (1993) 
  25. Kenley RA, Lee MO, Mahoney TR, Sanders LM, Macromolecules, 20, 2398 (1987) 
  26. Lee JW, Gardella JA, Macromolecules, 34(12), 3928 (2001) 
  27. Li SM, Garreau H, Vert M, J. Mater. Sci. Mater. Med., 1, 123 (1990) 
  28. Li SM, Garreau H, Vert M, J. Mater. Sci. Mater. Med., 1, 131 (1990) 
  29. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y, Macromolecules, 30(24), 7403 (1997) 
  30. Yoo ES, Im SS, J. Environ. Polym. Deg., 6, 4 (1998)
  31. Iwata T, Doi Y, Enzymatic Degradation of Biosyntheticn and Chemosynthetic and Chemosynthetic Polymers, Biochemical Principle and Mechanisms of biosynthesis and Biodegradation of Polymers, Alexander Steinbuchel(Ed.), 214 (1999)
  32. Iwata T, Doi Y, Macromol. Chem. Phys., 200, 2429 (1999) 
  33. Iwata T, Doi Y, Kokubu F, Teramachi S, Macromolecules, 32(25), 8325 (1999) 
  34. Shin JS, Yoo ES, Im SS, Song HH, Korea Polym. J., 9(4), 210 (2001)
  35. Zong XH, Wang ZG, Hsiao BS, Chu B, Zhou JJ, Jamiolkowski DD, Muse E, Dormier E, Macromolecules, 32(24), 8107 (1999) 
  36. Yoo ES, Im SS, Macromol. Symp., 142, 13 (1999)
  37. King E, Cameron RE, J. Appl. Polym. Sci., 66(9), 1681 (1997) 
  38. Yoo ES, Im SS, J. Environ. Polym. Deg., 7, 1 (1999)