화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.1, 9-15, February, 2002
Methanol과 CO2로부터 디메틸카보네이트의 직접합성
Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide
E-mail:
초록
메탄올과 CO2로부터 디메틸카보네이트(DMC)의 직접합성은 간단한 공정이고, 독성이 적고 가격이 싼 CO2를 활용하기 때문에 가장 매력적인 대체공정으로 주목을 받고 있다. 그러나, 직접합성은 열역학적 평형의 제약을 강하게 받는 가역반응이다. CeO2 또는 Ce1-xZrxO2 촉매를 사용하여 선택성이 뛰어나게 메탄올과 CO2 만으로 DMC를 합성하였다. DMC의 수율은 반응 온도 150 ℃까지는 증가하였고 그 이상의 온도에서는 감소하였다. CO2와 메탄올의 농도 역시 DMC 수율에 명백한 영향을 보였다. 촉매들의 산-염기의 이원기능이 DMC 형성과 관련이 있으며, 다양한 실험결과로부터 DMC 형성에 대한 반응기구를 제안하였다.
The direct synthesis of dimethyl carbonate(DMC) from methanol and CO2 is considered to be the most attractive alternative route due to its simple process, less toxicity and the low-cost of CO2. Unfortunately, the direct synthesis is a reversible reaction and is strongly limited by thermodynamic equilibrium. DMC was synthesized from methanol and CO2 with high selectivity using CeO2 or Ce1-xZrxO2 catalysts. The yield of DMC increased with the reaction temperature, reached maximum at 150 ℃, and decreased above 150 ℃. The concentration of CO2 and methanol showed also an obvious influence on yield of DMC. The acid-base bifunction on catalysts was related to the DMC formation. The formation mechanism of DMC was proposed based on the experimental results.
  1. Pacheco MA, Marshall CL, Energy Fuels, 11(1), 2 (1997) 
  2. Qi J, Qihe L, Zhongtao H, Chinese J. Catal., 17(2), 91 (1996)
  3. Koh JC, Kim BS, Theor. Appl. Chem. Eng., 6, 2617 (2000)
  4. Kim JD, Lee KH, Lim JS, Lee YW, Chu CY, Theor. Appl. Chem. Eng., 6, 2357 (2000)
  5. Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1 (1996) 
  6. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K, Catal. Lett., 58(4), 225 (1999) 
  7. Anderson JR, Boudart M, Catal. Sci. Technol., 4, 176 (1983)
  8. Japan Patent, 56-40707 (1981)
  9. Chang Y, Han Y, Yang C, Li W, Wang X, Proceeding of 3rd China-Korea Joint Workshop on Coal & Clean Energy Utilization Technology, 54 (2000)
  10. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355 (2000) 
  11. Zhao T, Han Y, Sun Y, Stud. Surf. Sci. Catal., 130, 461 (2000)
  12. Zhong SH, Wang JW, Xiao XF, Li HS, Stud. Surf. Sci. Catal., 130, 1565 (2000)
  13. Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M, J. Catal., 151(1), 168 (1995) 
  14. Trovarelli A, Zamar F, Llorca J, Deleitenburg C, Dolcetti G, Kiss JT, J. Catal., 169(2), 490 (1997) 
  15. Fornasiero P, Kaspar J, Graziani M, Appl. Catal. B: Environ., 22(1), 11 (1999) 
  16. Luo MF, Zheng XM, Appl. Catal. A: Gen., 189(1), 15 (1999) 
  17. Fornasiero P, Kaspar J, Graziani M, J. Catal., 167(2), 576 (1997) 
  18. Fornasiero P, Balducci G, Dimonte R, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M, J. Catal., 164(1), 173 (1996) 
  19. Masui T, Ozaki T, Machida K, Adachi G, J. Alloy. Compd., 292, L8 (1999) 
  20. Pound BG, Solid State Ion., 52, 183 (1992) 
  21. Vlaic G, Fornasiero P, Geremia S, Kaspar J, Graziani M, J. Catal., 168(2), 386 (1997) 
  22. Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A, J. Catal., 193(2), 338 (2000) 
  23. Lee JH. Lee TJ, Kim KS, 2nd Asia-Pacific Congress on Catalysis, PB28 (2000)
  24. Kim YC, M.S. Thesis, Yeungnam University (2001)
  25. Hori CE, Permana H, Ng KYS, Brenner A, More K, Rahmoeller KM, Belton D, Appl. Catal. B: Environ., 16(2), 105 (1998) 
  26. Otsuka K, Wang Y, Nakamura M, Appl. Catal. A: Gen., 183(2), 317 (1999) 
  27. Cullity BD, "Elements of X-Ray Diffraction," Bando Press, Seoul (1990)