화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.1, 105-112, January, 2002
전기활성 IPMC(Ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구
Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator
E-mail:
초록
연구는 electro-active polymer(EAP)의 특성을 가지는 ion-exchange polymer metal composite(IPMC)을 이용하여 지능형 대장내시경 개발에 목적을 두고 있다. IPMC는 낮은 구동전압과 빠른 반응속도로 인하여 매우 매력적인 물질이다. 본 연구에서는 IPMC구동기의 전극을 무전의 도금 방법을 이용하여 용액함침-환원방법(impregnation-reduction method)으로 제조하였으며 코팅된 백금전극의 횟수에 따라 변위와 변화를 측정하였다. 구동특성을 알아보기 위하여 길이, 주파수에 대한 변위, 힘을 측정하였으며, 주파수 대역은 저주파 대역과 공명주파수 대역을 사용하는 것이 적합하다는 결론을 얻었다. 또한 다양한 구동적 특성과 수분의 함량에 따른 영향에 대해 고전적 적층 이론 (classical laminate theory, CLT)을 이용하여 이방성 IPMC의 응력분포와 수분이동에 따른 모멘트, 변형률, 곡률(cuvature)을 모델링 하였다.
The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.
  1. Shahinpoor M, Systems Control World Scientific, 31 (1998)
  2. Bar-Cohen Y, Leary S, Shahinpoor M, Harrison JO, Smith J, Proc. SPIE, 3669, 57 (2000)
  3. Furukawa, Wen JX, Jpn. J. Appl. Phys., 23, 677 (1984) 
  4. Hunter IW, Lafontaine S, IEEE Solid-State Sensor Actuator Workshop, 165 (1992)
  5. Pelrine R, Kornbluh R, Joseph J, "Artificial Muscle Actuator," Proc. of the Frist Int. Micromachine Symp., p. 143, Nov. 1-2 (1995)
  6. Lee JH, Nam JD, Choi HR, Kim HM, Jeon JW, Kim HK, Tak YS, 1st Int. Microsystem Symp., p. 183, Seoul (2001)
  7. Lee JH, Lee JD, Choi HR, Kim HM, Jeon JW, Kim HK, Tak YS, Proc. SIPE, 4329, 63 (2001)
  8. Kim KJ, Shainpoor M, Razami A, Proc. SPIE, 3987, 315 (2000)
  9. Pister KS, Dong SB, J. Eng. Mech. Division ASCE, 1 (1959)
  10. Ressner E, Stavsky Y, J. Appl. Mech., 402 (1961)
  11. Jones RM, "Mechanics of Composite Materials," Hemisphere Pub. Co., New York, 1975 (1975)
  12. Daniel IM, Ishai O, "Engineering Mechanics of Composite Materials," Oxford University Press, New York, 1994 (1994)
  13. Millet P, Pineri M, Durand R, J. Appl. Electrochem., 19, 162 (1989) 
  14. Millet P, Durand R, Dartyge E, Tourillon G, Fontaine A, J. Electrochem. Soc., 140, 1373 (1993) 
  15. Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrog. Energy, 7, 397 (1982) 
  16. Liu R, Her WH, Fedkiw PS, J. Electrochem. Soc., 139(1), 15 (1992) 
  17. Grot WGF, Munn CE, Walmsly PN, J. Electrochem. Soc., 119, 108C (1972)
  18. Li JY, Nermat-Nasser S, Proc. SPIE, 3987, 103 (2000) 
  19. Bar-Cohen Y, Leary S, Yavrouian A, Oguro K, Tadokoro S, Harrison J, Smith J, Su J, Proc. SPIE, 3987, 140 (2000) 
  20. Tadokoro S, Yamagami S, Takamori T, Oguro K, Proc. SPIE, 3987, 92 (2000) 
  21. Tadokoro S, Li JY, Nemat-Nasser S, Proc. SPIE, 3987, 103 (2000) 
  22. Nemat-Nasser S, Li JY, Proc. SPIE, 3987, 82 (2000) 
  23. Enikov ET, Nelson BJ, Proc. SPIE, 3987, 129 (2000) 
  24. Li JY, Nemat-Nasser S, Proc. SPIE, 3987, 103 (2000) 
  25. Benslimane M, Gravesen P, West K, Skaarup S, Sommer-Larsen P, Proc. SPIE, 3669, 87 (1999) 
  26. Nemat-Nasser S, Li JY, J. Appl. Phys., 87(7), 3321 (2000)