화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 883-889, December, 2001
미량의 TOA가 첨가된 30% TBP/Dodecane-HNO3 계에서의 Tc 추출 증진 및 Tc, Np, U의 선택적 공추출
Enhancement of Tc Extraction and Selective Co-extraction of Tc, Np and U by Adding a Small Amount of TOA in 30% TBP/Dodecane-HNO3 System
E-mail:
초록
본 연구는 30 vol.% TBP(tributyl phosphate)/dodecane에 TOA(tri-n-octyl amine)를 소량 첨가하는 방법(30% TBP/x% TOA)에 의해 Tc의 추출율을 증진시키면서 Tc, Np, U만을 선택적으로 공추출시키는 조건을 찾기 위하여 수행하였다. 30% TBP에 의한 Tc추출의 경우(D(Tc-TBP)) 질산농도 0.8 M 이하에서는 H(+) 농도와 TBP의 자유농도 간의 경쟁반응으로, 1M 이상에서는 TBP의 자유농도에만 의존하여 추출된다. 반면에 30% TBP/x% TOA의 경우(D(Tc-TBP/TOA)) 수용상 내 NO3(-) 농도 2M 이하에서는 TOA 내 함유되어 있는 NO3(-)과 수용상 내 TcO4(-)간의 음이온 교환반응에 의해 추출된다. 한편 질산농도 1M에서는 Np 산화제는 K2Cr2O7가 효과적이며, 1M HNO3 및 0.001 M K2Cr2O7에서 30% TBP/0.5% TOA에 의한 Tc, Np, U의 추출율은 각각 81%, 89.2%였으며, 기타 Am, Nd, Mo, Fe등은 5% 이하였다. 이로부터 30% TBP/ x% TOA가 Tc의 추출증진을 위한 가장 효과적인 방법이라는 것과 Tc을 제외한 기타 원소의 추출은 거의 TBP에 의해 주도됨을 알 수 있다. 그리고 공존원소가 Tc의 추출에 미치는 영향은 없고, 30% TBP/x% TOA사용 시 제 3상의 생성 방지를 위해 Zr의 선 제거가 필요하다.
To investigate the enganced extraction yield of Tc from a simulated solution, a small amount of tri-n-octylamine was added to 30 vol% tributyl phosphate/n-dodecane (30% TBP/x% TOA). Effects of nitric acid and TOA concentrations on the selective co-extraction of Tc, Np and U from the solution were also studies. At less than 0.8 M HNO3, the extraction of Tc(D(Tc-TBP)) with 30% TBP occurred by a competition between H(+) ion concentration in the aqueous phase and free TBP concentration. Above 1 M HNO3, however, D(Tc-TBP) depended on only the free TBP concentration. At nitrate concentration of less than 2 M in the aqueous phase, however, the extraction of Tc(D(Tc-TBP/TOA)) with 30% TBP/x% TOA occurred through a simple anion exchange mechanism between TcO4(-) in the aqueous phase and NO3(-) ion in the organic phase. K2Cr2O7 was an effective oxidant of Np at 1 M HNO3. At 1 M HNO3, 0.001 M K2Cr2O7 and 30% TBP/0.5% TOA, the extraction yields of Tc, Np and U were 81.9%, 86%, 89.2%, resectively. However, the yields of Am, Eu, Nd, Mo and Fe were below 5%. It was found that 30% TBP/x% TOA was the most effective extraction condition that enhanced Tc extraction; the other elements were extracted by using TBP only. Coexisting elements such as Eu, Nd, Mo and Fe did not affect the extraction yields of Tc. When 30% TBP/x% TOA was used. then Zr had to be pre-removed to prevent the formation of three-phase.
  1. Takayanagi M, Fujine S, Muraoka S, Kubota M, Adachi T, Miyoshi Y, Banba T, Ohnuki T, Maeda A, Sato T, "Safety Research and Development of Base Technology on Nuclear Fuel Cycle," JAERI-Conf 99-004 (1999)
  2. Madic C, Huson MJ, Liljenzin JO, Glatz JP, Nannicini R, Kolarik Z, Odoj R, "New Partitioning Techniques for Minor Actinide," EUR-19149 (2000)
  3. ICRP Report, "Limits for Intake of Radionuclides by Workers," ICRP Pub., Park I (1978)
  4. ICRP Report, "Limits for Intake of Radionuclides by Workers," ICRP Pub., Park II (1980)
  5. ICRP Report, "Limits for Intake of Radionuclides by Workers," ICRP Pub., Park III (1981)
  6. Morita Y, Kubota M, "Recovery of Np," JAERI-M-84-043 (1984)
  7. Fabienne W, "Oxydo-Reduction du Np Dans les Melanges Phosphate Tributy Lique/Dodecane," CEA-R-5478 (1989)
  8. Lee EH, Kim SH, Lim JG, Kim KW, Yoo JH, HWAHAK KONGHAK, 39(1), 36 (2001)
  9. Lee EH, Kim SH, Kim KW, Kwon SG, Yoo JH, J. Korean Ind. Eng. Chem., 11(7), 729 (2000)
  10. Pruett DJ, "The Solvent Extraction of Heptavalent Tc and Re by Tributyl Phosphate," ORNL/TM-8668 (1984)
  11. Schultz WW, Burger LL, Navratil JD, Bender KP, "Science and Technology of TBP," CRS Press, Florida, U.S.A. (1990)
  12. Uchiyama G, Fujine S, Hotoku S, Maeda M, Nucl. Technol., 102, 341 (1993)
  13. Kolarik Z, Dressler P, Solvent. Extr. Ion Exch., 7(4), 625 (1989)
  14. Jassim TN, Persson G, Lljenzin JD, Solvent Extr. Ion Exch., 2(7), 1079 (1984)
  15. Akopov GA, Krinitsyn AP, Tsarenko AF, J. Radioanal. Nucl. Chem. Articles, 140(2), 349 (1990) 
  16. Jassim TN, Lljenzin JD, Lundqvist R, Persson G, Solvent Extr. Ion Exch., 2(3), 405 (1984)
  17. Macasek F, Radiochem. Radioanal. Lett., 22(3), 175 (1975)
  18. Takeuchi M, Tanaka S, Yamawaki M, Radiochim. Acta, 63, 97 (1993)
  19. Takeuchi M, Tanaka S, Yamawaki M, Solvent Extr. Ion Exch., 13(1), 43 (1995)
  20. Boyd GE, Larson QV, J. Phys. Chem., 64, 988 (1960)
  21. Rohal KM, Van Seggen DM, Clark JF, Solvent Extr. Ion Exch., 14(3), 401 (1996)
  22. Khopkar PK, Mathur JN, J. Inorg. Nucl. Chem., 43, 1035 (1981) 
  23. Landgren A, Liljenzin JO, Solvent Extr. Ion Exch., 17(6), 1387 (1999)
  24. Keder WE, Sheppard JC, Wilson AS, J. Inorg. Nucl. Chem., 12, 327 (1960) 
  25. Nakashima T, Lieser KH, Radiochim. Acta, 38, 203 (1985)
  26. Kubota M, Morita Y, Tochiyama O, Inoue Y, "Survey and Classification of Extractants," JAERI-M 88-002 (1988)
  27. Apostolidis C, Glatz JP, Molinet R, "Recovery of MA from Irradiated Superfact Fuels," Global 1995, Versailles, France, 2, 1027 (1995)
  28. Bard AJ, Parsons R, Jordan J, "Standard Potentials in Aqueous Solution," Marcell Dekker, Inc. N.Y. (1985)
  29. Dukes EK, "Oxidation of Np(V) by Vanadium(V)," DP-434 (1959)
  30. Tanaka C, Nemoto S, Tsubota T, Hoshino T, "Analytical Chemistry of Np," PNCT-841-71-35 (1971)