화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.7, 787-792, November, 2001
Fe(III)-NTA로 촉매화된 유사펜톤반응을 이용한 1-헥산올과 사염화탄소의 분해
Treatment of 1-Hexanol and Carbon Tetrachloride in Modified Fenton's Reagent Using Iron(III)-NTA Complex
E-mail:
초록
여러종류의 Fe(III)-유기산 복합체를 통해서 유도된 유사펜톤반응에서 과산화수소의 농도 및 pH의 변화에 따른 오염물질 (1-헥산올, 사염화탄소)의 분해율을 측정하였으며 산화 및 환원 메커니즘을 알아보고자 하였다. 킬레이트제로 ethylenediaminetetraacetic acid (EDTA), nitrilotriaceti acid (NTA), oxalate와 citrate를 사용한 유사펜톤반응에서 1-헥산올, 사염화탄소의 분해율을 측정하였는데 Fe(III)-NTA는 가장 높은 유기물질의 분해율을 보였다. 유사펜톤반응에서 과산화수소의 농도가 294 mM에서 1470 mM로 증가함에 따라 분해율이 증가하였으며 pH가 3에서 9로 증가함에 따라 분해율이 증가하였으나 pH 12에서는 분해율이 오히려 감소하였다. 유사펜톤반응과의 비교를 위해서 실시한 전통적인 펜톤반응에서 1-헥산올의 분해는 pH 2 ~ 4에서 가장 효율적이었으며 사염화탄소의 분해율은 pH가 증가함에 따라 증가하였다. 유사펜톤반응에서 산화 및 환원반응 메커니즘을 알아보기 위해서 hydroxyl radical (OH·)의 스케빈져로 이소프로판올을 환원제의 스케빈져로는 플로로포름을 이용한 실험을 실시하였는데 1-헥산올의 분해는 OH·의 산화작용으로 설명되어질 수 있으며 사염화탄소의 분해는 superoxide radical (OO·(-))과 hydroperoxide anion (OOH(-))등에 의한 환원작용으로 보여진다.
The purpose of this work is to evaluate the degradation rate of contaminants in modified Fenton's reagent using chelating agents (NTA, EDTA, citrate and oxalate) and to investigate coexisting oxidative-reductive mechanism under various pH and H2O2 concentrations. The modified Fenton's reaction using iron(III)-NTA showed maximum degradation of probe compounds: 1-hexanol and carbon tetrachloride (CT). In the modified Fenton's reaction, degradation of probes was higher at high concentration of H2O2. As the pH was increased from 3 to 9, the degradation rate of probes increased. However, the degradation of probes decreased significantly at pH 12. Normal Fenton's reaction was also conducted in parallel with the modified Fenton's reaction. The degradation of 1-hexanol was effectively processed at pH of 2 ~ 4. As pH was increased, the degradation of CT also increased. To confirm that the modified Fenton's reagent provided not only hydroxyl radicals but also reductants, the oxidation and reduction mechanisms were further studied by scavenging analyses using isopropanol as the hydroxyl radical scavenger and chloroform as the reductant scavenger. These results indicated that hydroxyl radical was the primary oxidant for 1-hexanol decomposition, whereas the degradation of CT was linked to the reductants, superoxide radicals (OO(-)·) and hydroperoxide anions (OOH(-)).
  1. Matthews JE, "Handbook of Bioremediation," 87, Lewis, Boca Raton (1994)
  2. Xu Y, Chemosphere, 43, 1103 (2001) 
  3. Water ZT, Huang CP, Chemosphere, 33, 1621 (1996) 
  4. Michele EL, Matthew AT, Chemosphere, 41, 409 (2000) 
  5. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL, Environ. Sci. Technol., 33, 3432 (1999) 
  6. Watts RJ, Udell MD, Rauch PA, Leung SW, Haz. Waste Haz. Mater., 7, 335 (1990)
  7. Motekaitis RJ, Martell AE, J. Coord. Chem., 31, 67 (1994)
  8. Singh S, Hider RC, Anal. Biochem., 171, 47 (1988) 
  9. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem., 17, 513 (1988)
  10. Scherer MM, Westall JC, Ziomek-moroz M, Tratnyek PG, Environ. Sci. Technol., 31, 2385 (1997) 
  11. Choi W, Hoffmann MR, Environ. Sci. Technol., 29, 1646 (1995) 
  12. Gabor M, Lind J, Eriksen TE, J. Phys. Chem., 88, 2320 (1984) 
  13. Poupko R, Rosenthal I, J. Phys. Chem., 77, 1972 (1973)