화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.5, 617-624, September, 2001
단계 중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구
A Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization
E-mail:
초록
음이온계 유화제를 사용하여 monomer pre-emulsion을 제조한 다음 ammonium persulfate를 개시제로 하여 단계 중합법에 의해 새로운 입자의 생성이 적고 중합 과정에서 안정성이 우수한 poly(methyl methacrylate)(PMMA)/polystyrene (PSt) 라텍스를 제조하였다. 본 연구에서는 shell 중합시에 새로운 입자의 생성이 적고 중합 중 안정성이 우수한 라텍스를 제조하기 위해 개시제농도, 유화제농도, 중합온도가 PMMA/PSt와 PSt/PMMA의 core-shell 구조에 미치는 영향을 알아 보았다. 중합한 라텍스를 입도분석기(particle size analyzer; PSA)및 투과전자현미경 (transmission electron microscope; TEM)을 이용하여 실제 입자측정과 입자형태 특성을 확인하였으며 시차주사열량계(differential scanning calorimeter, DSC)를 이용하여 유리전이온도(T(g))의 측정, 필름 조막성 (minimum film formation temperature; MFFT), NaOH 첨가에 의한 가수 분해에 따르는 pH를 측정하여 core-shell의 또 다른 특성을 확인하였다.
The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new paticles during shell polymerization. To solve the disadvantages, we study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.
  1. Backhouse AJ, U.S. Patent, 4,403,003 (1983)
  2. Liang YC, Svec F, Frechet JM, J. Polym. Sci. A: Polym. Chem., 33(15), 2639 (1995) 
  3. Williams DJ, J. Polym. Sci. A: Polym. Chem., 8, 2617 (1970) 
  4. Williams DJ, J. Polym. Sci. A: Polym. Chem., 8, 2733 (1970) 
  5. Kusch P, Williams DJ, J. Polym. Sci. A: Polym. Chem., 11, 143 (1973)
  6. Williams DJ, J. Polym. Sci. A: Polym. Chem., 11, 301 (1973)
  7. Williams DJ, J. Polym. Sci. A: Polym. Chem., 12, 2123 (1974)
  8. Williams DJ, Macromolecules, 7, 304 (1974) 
  9. Paxton TR, J. Colloid Interface Sci., 31(1), 19 (1969) 
  10. Cook DG, J. Polym. Sci., 46, 1387 (1992)
  11. Cook DG, Rudin A, Plumtree A, J. Appl. Polym. Sci., 48, 75 (1993) 
  12. Goodier JN, J. Appl. Mech., 55, 39 (1993)