화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.69, No.1, 74-82, 2000
Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process
Controlled feeding of nutrient supplements to a cell culture to enhance monoclonal antibody productivity has been practiced widely in high-yield, fed-batch processes. In this study, a similar feeding concept has been applied to a perfused culture and evaluated for the effects on bioreactor productivity and product quality. Our experimental results show that, by using such a "controlled-fed perfusion" approach, the volumetric antibody productivity (antibody per liter per day) was significantly increased by nearly twofold over the perfusion process, and surpassed fed-batch and batch processes by almost tenfold. The substantial boost in the overall productivity is attributable primarily to the combined effects of increased cell density as well as reduced product dilution. Both were achieved through careful nutrient supplementation in conjunction with metabolite minimization. As the manufacturing process evolved from roller bottles to the controlled-fed perfusion bioreactor system, the immunoreactivity and the cDNA sequences of the antibody were well preserved. However, the product glycosylation distribution patterns did alter. The controlled-feed perfusion process demonstrated a unique encompassment of the advantages of fed-batch and perfusion methods; that is, high product concentration with high volume throughput. Therefore, it may be very suitable for large-scale production of monoclonal antibodies.