화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.1, 45-51, February, 2001
용액침적법으로 합성한 Pd막의 투과특성과 막 반응기로서의 응용
Permeation Characteristics of Pd Membranes Prepared by Wet-impregnated Deposition and Their Application for Membrane Reactors
E-mail:
초록
팔라듐 복합막을 용액침적법을 이용하여 제조하였다. SiO2/Ni-stainless steel 지지체를 제조하고, 팔라듐 전구체인 Pd(C3H5)(C5H5)를 지지체 표면에 입힌 후 실온에서 수소기체를 이용하여 전구체로부터 은회색의 팔라듐 결정층을 형성하였다. 팔라듐층의 두께는 1 ㎛이며, 아주 치밀한 구조를 보였다. 복합막의 중간층인 SiO2층은 팔라듐층의 안정성을 향상시켰다. 팔라듐 코팅 회수를 바꾸어 가며 복합막을 제조하였고, 이 팔라듐 복합막을 막 반응기에 적용하여 사이클로헥산의 벤젠으로의 탈수소 반응을 살펴보았다. 이와 같은 막 반응기에 있어서 493 K의 반응온도조건에서 평형전환율보다 42%나 높은 전환율을 얻었다.
A palladium composite membrane was easily prepared by wet-impregnated deposition. Pd(C3H5)(C5H5) as a palladium precursor was coated on a SiO2/Ni-stainless steel support, and reacted with hydrogen at room temperature. The precursor was decomposed into palladium crystallites, silver gray, and the palladium dense layer was approximately 1 ㎛ thick. SiO2 as an intermediate layer of the palladium composite membrane improved stability of the membrane. Different Pd composite membranes were prepared by changing the number of Pd coatings, and these membranes, which have different H2 permeance and selectivity, were used in membrane reactors for dehydrogenation of cyclohexane to benzene. For the membrane reactors, the conversion of cyclohexane was 42% more than the equilibrium conversion at 493 K.
  1. Li A, Liang W, Hughes R, J. Membr. Sci., 165(1), 135 (2000) 
  2. Li A, Liang W, Hughes R, J. Membr. Sci., 350, 106 (1999)
  3. Yan SC, Maeda H, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 33(3), 616 (1994) 
  4. Jun CS, Lee KH, J. Membr. Sci., 157(1), 107 (1999) 
  5. Nam SE, Lee SH, Lee KH, J. Membr. Sci., 153(2), 163 (1999) 
  6. Nam SE, Lee KH, J. Membr. Sci., 170(1), 91 (2000) 
  7. Nam SE, Lee KH, J. Korean Ind. Eng. Chem., 11(1), 113 (2000)
  8. Jayaraman V, Lin YS, J. Membr. Sci., 104(3), 251 (1995) 
  9. Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S, J. Membr. Sci., 78, 247 (1993) 
  10. Lee SJ, Yang SM, Park SB, J. Membr. Sci., 96(3), 223 (1994) 
  11. Li AW, Liang WQ, Hughes R, J. Membr. Sci., 149(2), 259 (1998) 
  12. Morooka S, Yan S, Yokoyama S, Kusakabe K, Sep. Sci. Technol., 30, 2827 (1995)
  13. Xomeritakis G, Lin YS, J. Membr. Sci., 120(2), 261 (1996) 
  14. Xomeritakis G, Lin YS, AIChE J., 44(1), 174 (1998) 
  15. Itoh N, AIChE J., 46, 83 (1998) 
  16. Wood B, J. Catal., 11, 30 (1968) 
  17. Abdalla BK, Elnashaie SS, AIChE J., 40(12), 2055 (1994) 
  18. Galuszka J, Pandey RN, Ahmed S, Catal. Today, 46(2-3), 83 (1998) 
  19. Ioannides T, Gavalas GR, J. Membr. Sci., 77, 207 (1993) 
  20. Yildirim Y, Gobina E, Hughes R, J. Membr. Sci., 135(1), 107 (1997) 
  21. Abdalla BK, Elnashaie SS, J. Membr. Sci., 101(1-2), 31 (1995) 
  22. Abdalla BK, Elnashaie SS, J. Membr. Sci., 85(3), 229 (1993) 
  23. Roh HS, Park MS, chang JS, Park YK, Park SE, J. Ind. Eng. Chem., 5(3), 198 (1999) 
  24. Ziaka ZD, Minet RG, Tsotsis TT, J. Membr. Sci., 77, 221 (1993) 
  25. Okubo T, Haruta K, Kusakabe K, Morooka S, Anzai H, Akiyama S, Ind. Eng. Chem. Res., 30, 614 (1991) 
  26. Brinker CJ, Scherer G, "Sol-Gel Science", 273, Academic Press, New York (1990)
  27. Tiscarenolechuga F, Hill CG, Anderson MA, J. Membr. Sci., 118(1), 85 (1996) 
  28. Jiang ZD, Wang JQ, Sep. Sci. Technol., 33(9), 1379 (1998)