화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.12, No.1, 69-76, March, 2000
Persistence length calculation from light scattering and intrinsic viscosity of dilute semiflexible polymide solutions with different degree of imidization
E-mail:
We have derived the translation diffusion coefficient and the intrinsic viscosity formula adopting the Kholodenko's theory using 3+1 dimensional Dirac propagator in the Kirkwood and Riseman scheme. We also performed static light scattering experiments and intrinsic viscosity measurement of dilute solutions of polyimides with different rigidities. In the framework of Kholodenko's theory, we can easily measure the persistence length of polyimide. We prepared five different polyamic acids and polyimides with different degree of imidization by controlling imidization temperatures. From experimental results, we obtained molecular weights and persistence lengths according to the Kholodenko's plot. The molecular weight and the intrinsic viscosity decreased and then increased with the imidization temperature but the persistence length increased monotonically and then leveled off. The persistence lengths calculated from intrinsic viscosities showed very good agreement with those from light scattering experiments.
  1. Auer PL, Gardner CS, J. Chem. Phys., 23, 1545 (1955) 
  2. Auer PL, Gardner CS, J. Chem. Phys., 23, 1546 (1955) 
  3. Bessonov MI, Koton MM, Kudryavtsev VV, Laius LA, Polyimides, Thermally Stable Polymers, Plenum Publishing Co. New York (1987)
  4. Cho H, Chung IJ, Macromol. Theory Simul., 8, 279 (1999) 
  5. Chu B, Laser Light Scattering, Academic Press, New York (1974)
  6. Coumou DJ, J. Colloid Sci., 15, 408 (1960) 
  7. Bresford G, Krigbaum W, A. Ciferi (ed.) Liquid Crystallinity in Polymers, VCH Publishing Inc., New York, chapter 2 (1991)
  8. Doi M, Edwards SF, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986)
  9. Dyakonova NV, Mikhailova NV, Sklizkova VP, Baranovskaya IA, Yu G, Baklagina VV
  10. Sidorovich KAV, Eskin VE, Koton MM, Vysokomol Soedin., A28, 2382 (1986)
  11. Eskin VE, Baranovska IA, Vysokomol Soedin., A19, 533 (1977)
  12. Harris RA, Hearst JE, J. Chem. Phys., 44, 2595 (1966) 
  13. Hearst JE, Harris RA, J. Chem. Phys., 46, 398 (1967) 
  14. He C, Windle AH, Macromol. Theory Simul., 4, 289 (1995) 
  15. Hickl P, Ballauff M, Scherf U, Mullen K, Linder P, Macromolecules, 30(2), 273 (1997) 
  16. Kholodenko AL, Annu. Phys., 202, 186 (1990) 
  17. Kholodenko AL, J. Chem. Phys., 96, 700 (1992) 
  18. Kholodenko AL, Macromolecules, 26, 4179 (1993) 
  19. Kholodenko AL, Ballauff M, Granados MA, Physica A, 260, 267 (1998) 
  20. Kratky O, Porod G, Pecl. Trav. Chim., 68, 1106 (1949)
  21. Krigbaum WR, Sasaki S, J. Polym. Sci. B: Polym. Phys., 19, 1339 (1981)
  22. Krigbaum WR, Brelsford G, Macromolecules, 21, 2502 (1988) 
  23. Kroy K, Frey E, Phys. Rev. E, 55, 3092 (1997) 
  24. Ya MS, M.I. Bessonov and V.A. Zubkov (eds.), Macromolecules of Polyamic Acids and Polyimides in Polyamic Acids and Polyimides: Synthesis, Tranformations, and Structures, CRC, Boca Raton (1989)
  25. Perico A, Guenza M, J. Chem. Phys., 83, 3103 (1985) 
  26. Perico A, Guenza M, J. Chem. Phys., 84, 510 (1986) 
  27. Shimada J, Yamakawa H, J. Chem. Phys., 85, 591 (1986) 
  28. Tschoegl NW, J. Chem. Phys., 39, 149 (1963) 
  29. Winkler RG, Reineker P, Harnau L, J. Chem. Phys., 101(9), 8119 (1994) 
  30. Winkler RG, Harnau L, Reineker P, Macromol. Theory Simul., 6, 1007 (1997) 
  31. Yamakawa H, Modern Theory of Polymer Solutions, Harper & Row, New York (1971)
  32. Yamakawa H, Fujii M, Macromolecules, 7, 128 (1974) 
  33. Yamakawa H, Shimada J, J. Chem. Phys., 83, 2607 (1985) 
  34. Young PR, Escott R, D. Wilson, H.D. Stenzenberger and P.M. Hergenrother, (eds.), Characterization of Polyimides in Polyimides, Book News, Inc. Portland, 129 (1990)