화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.34, No.5, 548-555, October, 2023
Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure
SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).