화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.61, No.1, 39-44, February, 2023
습식 분급으로 입도 조절된 서브 마이크론 크기의 Si 음극활물질의 전기화학적 특성 분석
Electrochemical Properties of Sub-micron Size Si Anode Materials Distributed by Wet Sedimentation Method
E-mail:
초록
본 연구에서는 습식 분극을 통하여 Si 다결정의 입자 크기를 조절을 하였으며, 입자 크기에 따른 Si 음극활물질의 용량 및 수명 특성 변화를 관찰하였다. 진동밀로 분쇄한 Si 입자를 습식법으로 분급한 시료의 입도를 분석한 결과 Si 의 불균일한 입자 분포가 균일하게 조절이 되었다. Si를 24시간 분급한 시료의 d50이 0.50 μm로 감소하였다. 전기화학 적 특성 분석 결과, 입자 크기의 감소로 인하여 전극 내의 저항을 나타내는 Rct 값이 현저하게 줄어들었다. 분급하지 않 은 Si 시료는 첫 사이클에서 2,869 mAh/g의 방전용량을 나타내었고, 100 사이클 후에는 85.7 mAh/g으로 방전용량이 감소하였다. Si를 24시간 분급한 시료의 경우에 초기에는 3,394 mAh/g의 용량을 보였으며, 100사이클 후에는 1,726 mAh/g의 용량을 유지하였다. 결과적으로 Si 입자의 크기가 감소할수록 방전용량이 증가하였으며, 사이클 수명도 증가 하였다.
In this study, the particle size of Si polycrystals was controlled through wet-sedimentation method, and changes in the capacity and cyclic characteristics of the Si anode material according to the particle size were observed. After wet-sedimentation of Si particles pulverized by a vibration mill, the non-uniform particle distribution of Si was uniformly controlled. The d50 of a sample in which Si was sedimented for 24 hours decreased to 0.50 μm. As a result of the electrochemical characteristic analysis, the Rct value representing the resistance in the electrode was significantly reduced due to the decrease in particle size. The unclassified Si sample exhibited a discharge capacity of 2,869 mAh/g in the first cycle, and decreased to 85.7 mAh/g after 100 cycles. The sample in which Si was classified for 24 hours showed a capacity of 3,394 mAh/g initially, and maintained a capacity of 1,726 mAh/g after 100 cycles. As the size of the Si particles decreased, the discharge capacity increased and the cycle life was also increased.
  1. Ma D, Cao Z, Hu A, Nano-Micro Lett., 6, 347 (2014)
  2. Li P, Kim H, Myung ST, Sun YK, Energy Storage Mater., 35, 550 (2021)
  3. Choi S, Bok T, Ryu J, Lee JI, Cho J, Park S, Nano Energy, 12, 161 (2015)
  4. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844 (2009)
  5. Kim WS, Hwa Y, Shin JH, Yang M, Sohn HJ, Hong SH, Nanoscale, 6, 4297 (2014)
  6. Guo S, Hu X, Hou Y, Wen Z, ACS Appl. Mater. Interfaces, 9, 42084 (2017)
  7. Cen Y, Qin Q, Sisson RD, Liang J, Electrochim. Acta, 251, 690 (2017)
  8. Teki R, Krishnan DM, Parker K, Lu RCT, Kumta TM, Koratkar N, Small, 5(20), 2236 (2009)
  9. Chelgani SC, Parian M, Parapari PS, Ghorbani Y, Rosenkranz J, J. Mater. Res. Technol., 8(5), 5004 (2019)
  10. Hui X, Zhao R, Zhang P, Li C, Wang C, Yin L, Adv. Energy Mater., 9, 1901065 (2019)
  11. Maroni F, Gabrielli S, Palmieri A, Marcantoni E, Croce F, Nobili F, J. Power Sources, 332, 79 (2016)
  12. Xu Y, Yuan T, Bian Z, Yang J, Zheng S, J. Power Sources, 453, 227467 (2020)
  13. Jin Y, Zhu B, Lu Z, Liu N, Zhu J, Adv. Energy Mater., 7, 1700715 (2017)
  14. Cao W, Han K, Chen M, Ye H, Sang S, Electrochim. Acta, 320, 134613 (2019)
  15. Tian H, Tan X, Xin F, Wang C, Han W, Nano Energy, 11, 490 (2015)
  16. Wu J, Qin X, Zhang H, He YB, Li B, Ke L, Lv W, Du H, Yang QH, Kang F, Carbon, 84, 434 (2015)
  17. Liu J, Kopold P, van Aken PA, Maier J, Yu Y, Angew. Chem.-Int. Edit., 127, 9768 (2015)
  18. Ikonen T, Nissinen T, Pohjalainen E, Sorsa O, Kallio T, Lehto VP, Sci. Rep., 7, 7880 (2017)
  19. Pan Q, Zuo P, Lou S, Mu T, Du C, Cheng X, Ma Y, Gao Y, Yin G, J. Alloy. Compd., 723, 434 (2017)
  20. Xu SD, Zhuang QC, Wang J, Xu YQ, Zhu YB, Int. J. Electrochem. Sci., 8, 8058 (2013)
  21. Cen YJ, Qin QW, Sisson RD, Liang J, Electrochim. Acta, 251, 690 (2017)
  22. Xing Z, Xu JH, Qian Y, Nano Res., 5(7), 477 (2012)
  23. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY, ACS Nano, 6(2), 1522 (2012)
  24. Xu Q, Li JY, Yin YX, Kong YM, Guo YG, Wan LJ, Chem. Asian J., 11, 1205 (2016)
  25. Liu B, Lu H, Chu G, Luo F, Zheng J, Chen S, Li H, Chin. Phys. B, 27, 088201 (2018)
  26. Ryu I, Choi JW, Cui Y, Nix WD, J. Mech. Phys. Solids, 57, 1717 (2011)
  27. Cho YH, Booh SW, Cho E, Lee H, Shin J, APL Mater., 5, 106101 (2017)