화학공학소재연구정보센터
Polymer(Korea), Vol.47, No.1, 92-98, January, 2023
고굴절 다공성 하이브리드 실리카 입자의 다중 광산란 효과를이용한 근적외선 차단 소재
Near-infrared Protection Materials Based on the Multiple Light Scatteringfrom Highly Refractive Porous Hybrid Silica Particles
E-mail:
초록
파장이 긴 근적외선은 산란 효과가 작고 공기 중에 잘 투과하기 때문에 피부에 직접 노출될 경우 피부 깊숙 한 곳까지 침투해 피부 온도를 높이고 노화를 촉진시키며 주름을 생성한다. 따라서 근적외선을 차단할 수 있는 새 로운 소재 기술이 필요하다. 본 연구에서는 다공성 실리카 분체의 표면에 고굴절 TiO2 나노입자를 섬 형태로 물리 적 코팅하여 다중 광산란 효과로 높은 근적외선 차단 특성을 나타내는 새로운 코어-쉘 타입의 하이브리드 소재를 제안하고자 한다. 간단한 용액 분산법을 통해 다공성 실리카 표면에 TiO2 나노입자를 도입하여 고굴절 하이브리드 실리카를 제조하였다. 근적외선 반사율 측정을 통해 제조된 하이브리드 입자 뿐만 아니라 입자가 적용된 썬크림 제 형에서의 적외선 차단 성능을 분석한 결과, 우수한 근적외선 차단 성능을 나타냄을 확인하였다.
Since near-infrared rays have long wavelengths, they typically show low light scattering effect and easily penetrate the air. Consequently, when directly irradiated on the skin, they penetrate deep into the skin to raise the skin temperature, accelerate aging, and create wrinkles. Therefore, a new material technology is essential for near-infrared protection. In this study, we intend to propose a new core-shell type hybrid material that exhibits high near-infrared blocking properties through multiple light scattering effect by physically coating high-refractive index TiO2 nanoparticles on the surface of porous silica microparticle in an island form. Highly refractive hybrid silica particles were prepared by introducing TiO2 nanoparticles into the porous silica surface through a simple solution dispersion method. Near-infrared reflectance measurements confirmed that the actual sunscreen formulation as well as the prepared pristine hybrid silica particles exhibited excellent near-infrared blocking performance.
  1. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T, Toxicology, 189, 21 (2003)
  2. McDaniel D, Farris P, Valacchi G, J. Cosmet. Dermatol., 17, 124 (2018)
  3. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J, PANS, 88, 10124 (1991)
  4. Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Emmett EA, Arch. Ophthalmol., 107, 1481 (1989)
  5. Cho S, Shin MH, Kim YK, Seo J, Lee YM, Park C, Chung JH, J. Investig. Dermatol. Symp. Proc., 14, 15 (2009)
  6. Scott JA, Phys. Med. Biol., 33, 243 (1988)
  7. Becheri A, Dürr M, Nostro PL, Baglioni P, J. Nanoparticle Res., 10, 679 (2008)
  8. Riva A, Algaba IM, Pepió M, Cellulose, 13, 697 (2006)
  9. Kani T, Tamonoki M, Suzuki T, Tsukada M, Kamiya H, Powder Technol., 176, 99 (2007)
  10. Malinka AV, J. Quant. Spectrosc. Radiat. Transf., 141, 14 (2014)
  11. Zho CK, Kwon HJ, Ahn SR, Asian J. Beauty Cosmetol., 9, 1 (2011)
  12. Gil HS, Rhee SW, Appl. Chem. Eng., 27, 16 (2016)
  13. Park OK, Kang YS, Colloids Surf. A: Physicochem. Eng. Asp., 257, 261 (2005)
  14. Wahyuni S, Kunarti ES, Swasono RT, Kartini I, Oriental J. Chem., 33, 249 (2017)
  15. Kim SJ, Lee JB, Park CH, Kim YJ, Yoo KJ, Park MS, Cho EC, Kim SU, Kim MG, Han NR, Cosmetic Composition Containing Organic-Inorganic Composite Particles for Blocking Near Infrared Rays, 2020.
  16. Sirimahachai U, Ndiege N, Chandrasekharan R, Wongnawa S, Shannon MA, J. Sol-Gel Sci. Technol., 56, 53 (2010)
  17. Muratov DS, Kuznetsov DV, Il’Inykh IA, Burmistrov IN, Mazov IN, Compos. Sci. Technol., 111, 40 (2015)
  18. Aqeel M, Anjum S, Imran M, Ikram M, Majeed H, Naz M, Ali S, Ahmad M, Mater. Res. Express, 6, 086215 (2019)
  19. Kim SJ, Lee JB, Jang JH, Song DH, Kang SH, Kim YJ, Yoon MS, Ryoo HC, Yoo KJ, Method for Evaluation of Near-Infrared Ray Blocking Effect. PCT/KR2016/000527, 2016.