화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.118, 519-532, February, 2023
Piperazine-activated diethanolamine formulation for post-combustion CO2 capture
E-mail:,
Although activated alkanolamine based solvents had great potential for energy-efficient post-combustion CO2 capture, yet these suffers from disadvantageous due to high capital cost of the process. In this research we developed and discussed the overall reaction scheme between CO2 and activated solvents. We investigated the kinetics of CO2 into piperazine (PZ) activated aqueous diethanolamine (DEA) by wetted-wall column contactor at (298–323) K, (5–15) kPa and fixed 3.0 kmol∙m-3. Physicochemical properties of such systems were determined while detailed uncertainty analysis were conducted. In thermodynamics point of view, liquid–liquid interaction were explored and evaluated by related parameters. The kinetics rate parameters for such activated solvents were interpreted based on kinetic study affording to the pseudo-first-order reaction method. At various temperature, kov of (PZ + DEA + H2O) were considerably larger than reported (AMP + PZ + H2O) systems. The results of kinetics study demonstrated that rate of CO2 in solvents were enhanced substantially as compared to DEA due to the addition of low quantity (0–0.45 kmol∙m-3) PZ into solvents. Besides, physicochemical properties were measured in terms of different models with absolute average deviation (AAD) < 5 %. Ultimately, (PZ + DEA + H2O) may be considered as vital solvents in amine scrubbing due to lower energy requirement for CO2 capture compared to (PZ + MEA + H2O).
  1. Rochelle GT, Science, 325(5948), 1652 (2009)
  2. Chen S, Han X, Sun X, Luo X, Liang Z, Chem. Eng. J., 386 (2020)
  3. Richner G, Puxty G, Carnal A, Conway W, Maeder M, Pearson P, Chem. Eng. J., 264, 230 (2015)
  4. Putta KR, Svendsen HF, Knuutila HK, Chem. Eng. J., 327, 868 (2017)
  5. Moioli S, Pellegrini LA, Chem. Eng. Res. Des., 93, 720 (2015)
  6. Khan AA, Halder GN, Saha AK, Int. J. Greenh. Gas Control., 32, 15 (2015)
  7. Das B, Deogam B, Agrawal Y, Mandal B, J. Chem. Eng. Data, 61, 2226 (2016)
  8. Mandal BP, Bandyopadhyay SS, Environ. Sci. Technol., 40, 6076 (2006)
  9. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467 (2002)
  10. Das B, Deogam B, Mandal B, Int. J. Greenh. Gas Control., 60, 172 (2017)
  11. Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A, Chem. Eng. J., 171, 725 (2011)
  12. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322 (2009)
  13. Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29, 2582 (2015)
  14. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Energy Environ. Sci., 7, 130 (2014)
  15. Gaspar J, Fosbøl PL, Chem. Eng. Sci., 138, 203 (2015)
  16. Puxty GD, Conway W, Yang Q, Feron PHM, U.S. Patent Application 16/317, 134, 2019.
  17. Gaspar J, Fosbøl PL, Chem. Eng. Sci., 158, 257 (2017)
  18. Rochelle G, Namjoshi O, Li L, Du Y, Nguyen T, U.S. Patent 9,321,007, 2016.
  19. Appl M, Wagner U, Henrici H, Kuessnet K, Volkamer F, Ernst-Neust N, US Patent 4, 336, 223, 1982.
  20. Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT, Int. J. Greenh. Gas Control., 4, 119 (2010)
  21. Kohl AL, Nielsen RB, Gas Purification, 5th Edn., Gulf Publishing Company, Houston, 1997.
  22. Dey A, Dash SK, Mandal B, Fuel, 277, 118209 (2020)
  23. Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M, Environ. Sci. Technol., 47, 1163 (2013)
  24. Pei Z, Yao SHI, Jianwen WEI, Wei Z, Qing YE, J. Environ. Sci., 20, 39 (2008)
  25. Laribi S, Dubois L, De Weireld G, Thomas D, Int. J. Greenh. Gas Control., 90, 102799 (2019)
  26. Kassim MA, Sairi NA, Yusoff R, Ramalingam A, Alias Y, Aroua MK, Acta, 639, 130 (2016)
  27. Conway W, Wang X, Fernandes D, Burns R, Puxty G, Maeder M, Environ. Sci. Technol., 46, 7422 (2012)
  28. Meyer D, Bignaud C, Chem. Eng. J., 428, 131264 (2021)
  29. Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
  30. Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res.', 35, 1107 (1996)
  31. Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
  32. Mandal BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58, 4137 (2003)
  33. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55, 5531 (2000)
  34. Derks PWJ, Kleingeld T, Van Aken C, Hogendoorn JA, Versteeg GF, Chem. Eng. Sci., 61, 6837 (2006)
  35. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 62, 7312 (2007)
  36. Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS, Chem. Eng. Sci., 66, 3223 (2011)
  37. Iliuta I, Hasib-ur-rahman M, Larachi F, Chem. Eng. J., 240, 16 (2014)
  38. Savage DW, Kim CJ, AIChE J., 31, 296 (1985)
  39. Blanc C, Demarais G, Entropy, 102, 53 (1981)
  40. Xiao S, Liu H, Gao H, Xiao M, Luo X, Idem R, Tontiwachwuthikul P, Liang Z, Chem. Eng. J., 316, 592 (2017)
  41. Kierzkowska-Pawlak H, Chacuk A, Siemieniec M, Int. J. Greenh. Gas Control., 24, 106 (2014)
  42. Doraiswamy LK, Sharma MM, Wiley, New York, 1984.
  43. Sema T, Khuenkaew W, Sirirathomsud O, Int. J. Greenh. Gas Control., 90, 102796 (2019)
  44. Paul S, Mandal B, J. Chem. Eng. Data, 51, 1406 (2006)
  45. Paul S, Mandal B, J. Chem. Eng. Data, 51, 2242 (2006)
  46. Zoghi AT, Feyzi F, Dehghani MR, Ind. Eng. Chem. Res., 51, 9875 (2012)
  47. Conway W, Beyad Y, Richner G, Puxty G, Feron P, Chem. Eng. J., 264, 954 (2015)
  48. Bougie F, Iliuta MC, J. Chem. Eng. Data, 57, 635 (2012)
  49. Karuna DB, Reddy KR, Rao GS, Rao GVR, Rambabu C, J. Mol. Liq., 174, 100 (2012)
  50. Das B, Deogam B, Mandal B, RSC Adv., 7, 21518 (2017)
  51. Królikowska M, Lipin´ski P, Maik D, Thermochim. Acta, 582, 1 (2014)
  52. Wang YW, Xu S, Otto FD, Mather AE, Chem. Eng. J., 48, 31 (1992)
  53. Arachchige USPR, Aryal N, Eimer DA, Melaaen MC, Nord. Rheol. Soc., 21, 299 (2013)
  54. Qian W, Xu Y, Zhu H, Yu C, J. Chem. Thermodyn., 49, 87 (2012)
  55. Vogel H, Weiss A, Phys. Chem., 86, 193 (1982)
  56. Águila-Hernández J, Trejo A, García-Flores BE, Molnar R, Fluid Phase Equilib., 267, 172 (2008)
  57. Modak A, Ghosh A, Bhaumik A, Chowdhury B, Adv. Colloid Interface Sci., 290, 102349 (2021)
  58. Modak A, Jana S, Microporous Mesoporous Mater., 276, 107 (2019)
  59. Luo X, Su L, Gao H, Wu X, Idem RO, Tontiwachwuthikul P, Liang Z, J. Chem. Eng. Data, 67, 129 (2017)
  60. Paul S, Thomsen K, Int. J. Greenh. Gas Control, 8, 169 (2012)
  61. Cadours R, Roquet D, Perdu G, Ind. Eng. Chem. Res., 46, 233 (2007)
  62. Mondal BK, Bandyopadhyay SS, Samanta AN, Int. J. Greenhouse Gas Control, 56, 116 (2017)
  63. Van Holst J, Versteeg GF, Brilman DWF, Hogendoorn JA, Chem. Eng. Sci., 64, 59 (2009)
  64. Modak A, Bhanja P, Dutta S, Chowdhury B, Bhaumik A, Green Chem., 22, 4002 (2020)
  65. Devries NP, Master of Science in Agricultural and Biological Engineering, University of Illinois, Urbana-Champaign, 2014.
  66. Sun WC, Yong CB, Li MH, Chem. Eng. Sci., 60, 503 (2005)
  67. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18, 105 (2012)
  68. Ji L, Zhang L, Zheng X, Feng L, He Q, Wei Y, J. CO2 Util., 51, 101653 (2021)
  69. Samanta A, Bandyopadhyay SS, Chem. Eng. J., 171, 734 (2011)
  70. Lia H, Zhang Z, J. CO2 Util., 26, 496 (2018)
  71. Hospital-Benito D, Lemus J, Santiago R, Palomar J, J. CO2 Util., 35, 185 (2020)
  72. Borhani TN, Oko E, Wang M, J. Ind. Eng. Chem., 75, 285 (2019)
  73. Borhani TN, Akbari V, Hamid MKA, Manan ZA, J. Ind. Eng. Chem., 22, 306 (2015)
  74. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64, 1185 (2009)
  75. Xiao S, Liu H, Gao H, Xiao M, Luo X, Idem R, Tontiwachwuthikul P, Liang Z, Chem. Eng. J., 316, 592 (2017)
  76. Kierzkowska-pawlak H, J. Air Waste Manag. Assoc., 60, 925 (2012)
  77. Yildirim O, Kiss AA, Hüser N, Leßmann K, Kenig EY, Chem. Eng. J., 213, 371 (2012)
  78. Pandey D, Mondal MK, Chem. Eng. J., 410, 128334 (2021)
  79. Muraleedharan R, Mondal A, Mandal B, Sep. Purif. Technol., 94, 92 (2012)
  80. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783 (2013)