Journal of Industrial and Engineering Chemistry, Vol.118, 351-361, February, 2022
Electrolyte recovery from spent Lithium-Ion batteries using a low temperature thermal treatment process
E-mail:
Electrolyte recovery is seldomly considered in state-of-art lithium-ion battery recycling methods but rather evaporates and decomposes uncontrolled during the pre-treatment steps. However, controlled and safe removal of the electrolyte is inevitable and of high importance to the recycling industry to minimize the environmental impact of the recycling processes by preventing severe threats produced by the inflammable, toxic and hazardous components of the electrolyte. This study investigated the effects of temperature and process time of a low temperature thermal treatment process on electrolyte recovery. The process exhaust gases and recovered products were analyzed by In-Situ Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC–MS) to determine the effectiveness of the significant process parameters. The results show that the electrolyte solvents, which are dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and ethylene carbonate (EC), were successfully recovered for 80 minutes of processing time at 130 ℃. The LiPF6 decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected in the exhaust gas stream and recovered as acidic solutions. Thermal treatment below 150 ℃ is a promising approach for the recovery of the electrolyte solvents prior to the metal recycling stage due to its simplicity, feasibility, and environmental benefit.
Keywords:Lithium-Ion batteries;Recycling process;Electrolyte;Thermal treatment;Spectroscopy analysis;Exhaust gas characterization
- Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 252–264, (2014).
- Tarascon JM, Armand M, Nature, 359 (2001)
- Mossali E, Picone N, Gentilini L, Rodrìguez O, Pérez JM, Colledani M, J. Environ. Manage., 264, 110500 (2020)
- European Commission, EUR-Lex - 02006L0066-20180704 - EN - EUR-Lex. Available at: Accessed November 1, 2021.
- European Commission, EUR-Lex - 52020PC0798 - EN - EUR-Lex. Available at: Accessed November 1, 2021.
- ERPS, Proposal for a Regulation of the European Parliament and the Council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020 Committee, n.d.
- Arshad F, Li L, Amin K, Fan E, Manurkar N, Ahmad A, Yang J, Wu F, Chen R, ACS Sustain. Chem. Eng., 8, 13527 (2020)
- Zhong X, Liu W, Han J, Jiao F, Qin W, Liu T, Zhao C, Waste Manage., 89, 83 (2019)
- Zhang G, Yuan X, He Y, Wang H, Xie W, Zhang T, Waste Manage., 115, 113 (2020)
- Bertilsson S, Larsson F, Furlani M, Albinsson I, Mellander BE, J. Power Sources, 365, 446 (2017)
- Diaz F, Wang Y, Weyhe R, Friedrich B, Waste Manage., 84, 102 (2019)
- Xu K, Chem. Rev., 104(10), 4303 (2004)
- Andersson P, Blomqvist P, Lorén A, Larsson F, Fire Mater., 40(8), 999 (2016)
- Lebedeva NP, Boon-Brett L, J. Electrochem. Soc., 163(6), A821 (2016)
- Nowak S, Winter M, Molecules, 22, 3 (2017)
- Marshall J, Gastol D, Sommerville R, Middleton B, Goodship V, Kendrick E, Metals (Basel), 10(6), 773 (2020)
- Grützke M, Kraft V, Weber W, Wendt C, Friesen A, Klamor S, Winter M, Nowak S, J. Supercrit. Fluids, 94, 216 (2014)
- Grützke M, Mönnighoff X, Horsthemke F, Kraft V, Winter M, Nowak S, RSC Adv., 5(54), 43209 (2015)
- Mu D, Liu Y, Li R, Ma Q, Dai C, New J. Chem., 41(15), 7177 (2017)
- He K, Zhang ZY, Alai L, Zhang FS, J. Hazard. Mater., 375, 43 (2019)
- Kock LD, Lekgoathi MDS, Crouse PL, Vilakazi BM, J. Mol. Struct., 1026, 145 (2012)
- NIST Standard Reference Data Program, Carbonic acid, dimethyl ester; Infrared Spectrum. Available at: Accessed August 6, 2021.
- Bohets H, Van Der Veken BJ, Phys. Chem. Chem. Phys., 1(8), 1817 (1999)
- Das AK, Sunanda K, Rajasekhar BN, J. Quant. Spectrosc. Radiat. Transf., 272, 107789 (2021)
- Fortunato B, Mirone P, Fini G, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 27(9), 1917 (1971)
- Kar BP, Ramanathan N, Sundararajan K, Viswanathan KS, J. Mol. Struct., 1072(1), 61 (2014)
- Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K, Electrochem. Solid State Lett., 4, 4 (2001)
- Yang H, Zhuang GV, Ross PN, J. Power Sources, 161(1), 573 (2006)
- Ravdel B, Abraham KM, Gitzendanner R, DiCarlo J, Lucht B, Campion C, J. Power Sources, 119-121, 805 (2003)
- Teng XG, Li FQ, Ma PH, Ren QD, Li SY, Thermochim. Acta, 436(1-2), 30 (2005)
- Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R, Electrochem. Commun., 14(1), 47 (2012)
- Liao Z, Zhang S, Zhao Y, Qiu Z, Li K, Han D, Zhang G, Habetler TG, J. Energy Chem., 49, 124 (2020)