Journal of Industrial and Engineering Chemistry, Vol.118, 318-329, February, 2023
A hybrid modeling framework for efficient development of Fischer-Tropsch kinetic models
E-mail:,
Fischer-Tropsch synthesis (FTS) receives an extensive attention as it can be used to produce various chemicals and fuels, such as linear alpha olefin, gasoline and jet fuel, in a sustainable way. While a kinetic model can help optimize the operating conditions of FTS reactors for a specific product portfolio, such a model is very challenging to develop due to the large number of species and reactions involved in FTS. To this end, in this work, we propose a hybrid modeling framework to efficiently build a kinetic model for FTS. Specifically, experiments are conducted using a Fe-Cu-K-SiO2 catalyst with the following operating variables: pressure, temperature, H2/CO ratio in syngas, and gas hourly space velocity. Then, using the experimental data, the effectiveness of the proposed framework is illustrated, which consists of three key components. The overall LHHW model is first used to predict the overall consumption rates of CO and H2 as well as the production rates of CO2 and overall hydrocarbons. Then, a convex piecewise linear fitting problem is formulated for the ASF distribution model, which can identify the break points (where the value of chain growth probability a changes) with global optimality. Finally, surrogate modeling is performed to obtain the models describing the changes in the optimal a values with respect to the operating conditions. The final model showed the overall relative error of 9.98% for CO, CO2 and H2, and 15.8% for hydrocarbons, which are comparable to the values reported in the literature.
- Dieterich V, Buttler A, Hanel A, Spliethoff H, Fendt S, Energy Environ. Sci., 13(10), 3207 (2020)
- Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N, Nat. Catal., 1(10), 787 (2018)
- Lyu S, Wang L, Li Z, Yin S, Chen J, Zhang Y, Li J, Wang Y, Nat. Commun., 11(1), 1 (2020)
- Choi M, Kim JW, Chung S, Lee Y, Bong S, Lee J, Chem. Eng. J., 430 (2022)
- Tucker CL, Ragoo Y, Mathe S, Macheli L, Bordoloi A, Rocha TCR, Govender S, Kooyman PJ, van Steen E, J. Catal., 411, 97 (2022)
- Niu C, Xia M, Chen C, Ma Z, Jia L, Hou B, Li D, Appl. Catal. A: Gen., 601(27) (2020)
- Li Z, Wu L, Han D, Wu J, Fuel, 220, 257 (2018)
- Hodala JL, Moon DJ, Reddy KR, Reddy CV, Kumar TN, Ahamed MI, Raghu AV, Int. J. Hydrog. Energy, 46(4), 3289 (2021)
- Van Der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)
- dos Santos RG, Alencar AC, Int. J. Hydrog. Energy, 45(36), 18114 (2020)
- Davies I, Möller KP, Chem. Eng. Sci., 241 (2021)
- Mousavi S, Zamaniyan A, Irani M, Rashidzadeh M, Appl. Catal. A: Gen., 506, 57 (2015)
- Lox ES, Froment GF, Ind. Eng. Chem. Res., 32(1), 71 (1993)
- Moazami N, Wyszynski ML, Rahbar K, Tsolakis A, Mahmoudi H, Chem. Eng. Sci., 171, 32 (2017)
- Ail SS, Dasappa S, Renew. Sust. Energ. Rev., 58, 267 (2016)
- Méndez CI, Ancheyta J, Chem. Eng. J., 390 (2020)
- Van Santen RA, Markvoort AJ, Filot IAW, Ghouri MM, Hensen EJM, Phys. Chem. Chem. Phys., 15(40), 17038 (2013)
- Lozano-Blanco G, Thybaut JW, Surla K, Galtier P, Marint GB, Ind. Eng. Chem. Res., 47(16), 5879 (2008)
- Van Belleghem J, Yang J, Janssens P, Poissonnier J, Chen D, Marin GB, Thybaut JW, J. Ind. Eng. Chem., 105, 191 (2022)
- Van Belleghem J, Constales D, Thybaut JW, Marin GB, Comput. Chem. Eng., 125, 594 (2019)
- Pour AN, Khodabandeh H, Izadyar M, Housaindokht MR, React. Kinet. Mech. Catal., 111(1), 29 (2014)
- Pour AN, Khodabandeh H, Izadyar M, Housaindokht MR, J. Nat. Gas Sci. Eng., 15, 53 (2013)
- Mosayebi A, Mehrpouya MA, Abedini R, Chem. Eng. J., 286, 416 (2016)
- Sonal, Pant KK, Upadhyayula S, Fuel, 236, 1263 (2019)
- Abbasi M, Mirzaei AA, Atashi H, Int. J. Hydrog. Energy, 44(45), 24667 (2019)
- Sun Y, Jia Z, Yang G, Zhang L, Sun Z, Int. J. Hydrog. Energy, 42(49), 29222 (2017)
- Eshraghi A, Mirzaei AA, Rahimi R, Atashi H, Korean J. Chem. Eng., 37(10), 1699 (2020)
- Bangi MSF, Kwon JSI, Comput. Chem. Eng., 134 (2020)
- Bhadriraju B, Bangi MSF, Narasingam A, Kwon JSI, AIChE J., 66(11), 1 (2020)
- Dai W, Mohammadi S, Cremaschi S, Comput. Chem. Eng., 156 (2022)
- Zhang D, Del Rio-Chanona EA, Petsagkourakis P, Wagner J, Biotechnol. Bioeng., 116(11), 2919 (2019)
- Lee D, Jayaraman A, Kwon JSI, PLoS Comput. Biol., 16(12), 1 (2020)
- Bangi MSF, Kao K, Kwon JSI, Chem. Eng. Res. Des., 179, 415 (2022)
- Shah P, Sheriff MZ, Bangi MSF, Kravaris C, Kwon JSI, Botre C, Hirota J, Chem. Eng. J., 441 (2022)
- Yang S, Navarathna P, Ghosh S, Bequette BW, Comput. Chem. Eng., 140 (2020)
- Chun DH, Lee HT, Yang JI, Kim HJ, Yang JH, Park JC, Kim BK, Jung H, Catal. Lett., 142(4), 452 (2012)
- Chun DH, Park JC, Lee HT, Yang JI, Hong S, Jung H, Catal. Lett., 143(10), 1035 (2013)
- Chun DH, Park JC, Hong SY, Lim JT, Kim CS, Lee HT, Yang JI, Hong S, Jung H, J. Catal., 317, 135 (2014)
- Chun DH, Park JC, Rhim GB, Lee HT, Yang JI, Hong SJ, Jung H, J. Nanosci. Nanotechnol., 16(2), 1660 (2016)
- Bae JS, Hong SY, Park JC, Rhim GB, Youn MH, Jeong H, Kang SW, Yang JI, Jung H, Chun DH, Appl. Catal. B: Environ., 244, 576 (2019)
- Rhim GB, Hong SY, Park JC, Jung H, Rhee YW, Chun DH, J. Nanosci. Nanotechnol., 16(2), 1793 (2016)
- Hong SY, Park JC, Lee HT, Yang JI, Hong SJ, Jung H, Chun DH, J. Nanosci. Nanotechnol., 16(2), 2014 (2016)
- Davis BH, Catal. Today, 84(1-2), 83 (2003)
- Yang R, Zhou L, Gao J, Hao X, Wu B, Yang Y, Li Y, Catal. Today, 298, 77 (2017)
- van Steen E, Claeys M, Möller KP, Nabaho D, Appl. Catal. A: Gen., 549, 51 (2018)
- Gorimbo J, Muleja A, Liu X, Hildebrandt D, Int. J. Ind. Chem., 9(4), 317 (2018)
- Shahrokhi M, Baghmisheh GR, Chem. Eng. Sci., 60(15), 4275 (2005)
- Kim D, Choi S, Jeong S, Bae M, Katikaneni SP, Bae J, Heo S, Lee JH, Chem. Eng. J., 424 (2021)
- Callaghan CA, Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach. 2006.
- Van Der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39 (2000)
- James OO, Chowdhury B, Mesubi MA, Maity S, RSC Adv., 2(19), 7347 (2012)
- Patzlaff J, Liu Y, Graffmann C, Gaube J, Appl. Catal. A: Gen., 186(1-2), 109 (1999)
- Puskas I, Hurlbut RS, Catal. Today, 84(1-2), 99 (2003)
- Chun DH, Rhim GB, Youn MH, Deviana D, Lee JE, Park JC, Jeong H, Top. Catal., 63(9-10), 793 (2020)
- Pour AN, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA, Fuel, 87(10-11), 2004 (2008)
- Malash GF, El-Khaiary MI, Chem. Eng. J., 163(3), 256 (2010)
- Rebennack S, Krasko V, INFORMS J. Comput., 32(2), 507 (2020)
- Kong L, Maravelias CT, INFORMS J. Comput., 32(3), 531 (2020)
- Magnani A, Boyd SP, Optim. Eng., 10(1), 1 (2009)
- Van Der Laan GP, Beenackers AACM, Ind. Eng. Chem. Res., 38(4), 1277 (1999)
- Schulz H, Claeys M, Appl. Catal. A: Gen., 186(1-2), 91 (1999)
- Toriello A, Vielma JP, Eur. J. Oper. Res., 219(1), 86 (2012)
- Soleimani-damaneh M, Knowledge-Based Syst., 21(5), 377 (2008)
- Cococcioni M, Fiaschi L, Optim. Lett., 15(7), 2455 (2021)
- ILOG, 562, (2017).
- Kim SH, Boukouvala F, Optim. Lett., 14(4), 989 (2020)
- Brunton SL, Proctor JL, Kutz JN, Bialek W, Proc. Natl. Acad. Sci., 113(15), 3932 (2016)
- Kim B, Ryu KH, Heo S, Comput. Chem. Eng., 159 (2022)
- Hoerl AE, Kennard RW, Technometrics, 12(1), 55 (1970)
- Tibshirani R, Stat JR, Soc. Ser. B, 58(1), 267 (1996)
- Kaheman K, Kutz JN, Brunton SL, Proc. R. Soc. A Math. Phys. Eng. Sci., 476(2242), 20200279 (2020)
- Zhang L, Schaeffer H, Multiscale Model. Simul., 17(3), 948 (2019)
- Wong TT, Pattern Recognit., 48(9), 2839 (2015)
- Vehtari A, Gelman A, Gabry J, Stat. Comput., 27(5), 1413 (2017)
- Fazlollahi F, Sarkari M, Zare A, Mirzaei AA, Atashi H, J. Ind. Eng. Chem., 18(4), 1223 (2012)
- Chang J, Bai L, Teng BT, Le Zhang R, Yang J, Xu YY, Xiang HW, Li YW, Chem. Eng. Sci., 62(18-20), 4983 (2007)
- Kwack SH, Bae JW, Park MJ, Kim SM, Ha KS, Jun KW, Fuel, 90(4), 1383 (2011)
- Kim JH, Choi N, Heo S, Comput. Chem. Eng., 168, 108056 (2022)