화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.40, No.1, 205-214, January, 2023
Downstream process development of biobutanol using deep eutectic solvent
E-mail:
Biobutanol is produced from lignocellulose fermentation. Owing to the abundance of this feedstock and the similarities between the properties of biobutanol and gasoline, biobutanol represents a promising alternative to current crude-oil-based automotive fuel. Environmentally friendly recovery of biobutanol from the fermentation products is essential for achieving carbon-neutral production. Because extraction substantially lowers the energy demand for distillation, an eco-friendly deep eutectic solvent (DES) was applied for biobutanol extraction here, and the non-random two-liquid (NRTL) parameters that were compatible with the process design program were derived using experimental measurements and molecular simulations. For the liquid-liquid equilibrium (LLE) parameter estimation, a non-iterative procedure was introduced with a suitable arrangement of binary parameters for the DES. Compared to previous studies, the process design results indicate a marked reduction in energy consumption for the near-complete recovery of high-purity biobutanol, requiring a comparable investment.
  1. Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK, Rev. Chem. Eng., 35, 475 (2019)
  2. Fomo G, Madzimbamuto TN, Ojumu TV, Sustainability, 12, 5244 (2020)
  3. Baritugo KA, Son JN, Sohn YJ, Kim HT, Joo JC, Choi JI, Park SJ, Korean J. Chem. Eng., 38, 1291 (2021)
  4. D'Alessandro EB, Soares AT, Lopes RG, Derner RB, Antoniosi NR, Chem. Eng. Commun., 208, 965 (2021)
  5. Kang S, Realff MJ, Yuan YH, Chance R, Lee JH, Korean J. Chem. Eng., 39, 1524 (2022)
  6. Verma R, Banerjee T, Glob. Chall., 3, 1900024 (2019)
  7. Verma R, Naik PK, Diaz I, Banerjee T, Fluid Phase Equilib., 533, 112949 (2021)
  8. Peng Y, Lu X, Liu B, Zhu J, Fluid Phase Equilib., 448, 128 (2017)
  9. Souza GAL, Silva LYA, Martinez PFM, J. Chem. Thermodyn., 158, 106444 (2021)
  10. Amiri H, Karimi K, Bioresour. Technol., 270, 702 (2018)
  11. Menchavez RN, Ha SH, Korean J. Chem. Eng., 36, 909 (2019)
  12. Amiri H, Karimi K, Zilouei H, Bioresour. Technol., 152, 450 (2014)
  13. Calhan A, Deniz S, Romero J, Hasanoglu A, Korean J. Chem. Eng., 36, 1489 (2019)
  14. Ibarra-Gonzalez P, Christensen LP, Rong BG, Chem. Eng. Commun., 209, 529 (2021)
  15. Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M, Yuvaraj D, Renew. Sust. Energ. Rev., 68, 788 (2017)
  16. Oh HW, Lee SC, Woo HC, Kim YH, Chem. Eng. Technol., 44, 2316 (2021)
  17. Paduszyński K, Więckowski M, Okuniewski M, Domańska U, J. Mol. Liq., 286, 110819 (2019)
  18. Arce PF, Guimaraes DHP, de Aguirre LR, Chem. Eng. Commun., 206, 1273 (2021)
  19. Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
  20. Jha D, Haider MB, Kumar R, Balathanigaimani MS, Chem. Eng. Res. Des., 111, 218 (2016)
  21. Wu LH, Wu L, Liu YS, Guo XQ, Hu YF, Cao R, Pu XY, Wang X, Chem. Eng. Res. Des., 129, 197 (2018)
  22. Woo HC, Kim YH, AIChE J., 65, e16665 (2019)
  23. Shang X, Ma S, Pan Q, Li J, Sun Y, Ji K, Sun L, Chem. Eng. Res. Des., 148, 298 (2019)
  24. Saravi SH, Ravichandran A, Khare R, Chen CC, AIChE J., 65, 1315 (2019)
  25. Tanveer S, Chen CC, AIChE J., 66 (2020)
  26. Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW, J. Chem. Eng. Data, 60, 1844 (2015)
  27. Dongmin H, Yanhong C, Chem. Eng. Process., 131, 203 (2018)
  28. Shu G, Tan Y, Cui L, Zhang Y, Zhang L, J. Chem. Eng. Data, 65, 3029 (2020)
  29. Michelsen ML, Fluid Phase Equilib., 9, 21 (1982)
  30. Marcilla A, Reyes-Labarta JA, Olaya MM, Fluid Phase Equilib., 433, 243 (2017)
  31. Li Z, Mumford KA, Smith KH, Chen J, Wang Y, Stevens GW, Ind. Eng. Chem. Res., 55, 2852 (2016)
  32. Denes F, Lang P, Lang-Lazi M, IChemE Symposium Series. Inst. Chem. Eng., London., 152, 877 (2006)
  33. Dubbeldam D, Calero S, Ellis DE, Snurr RQ, (accessed on April 15, 2022).
  34. Dubbeldam D, Calero S, Ellis DE, Snurr RQ, Mol. Simul., 42, 81 (2016)
  35. Seo CH, Kim YH, Sep. Purif. Technol., 209, 1 (2019)
  36. Lee SC, Woo HC, Kim YH, Chem. Eng. Process., 160, 108286 (2021)
  37. Lee SC, Woo HC, Kim YH, Fuel, 310, 122393 (2022)
  38. Rodríguez NR, González ASB, Tijssen PMA, Kroon MC, Fluid Phase Equilib., 385, 72 (2015)
  39. Patrascu I, Bildea CS, Kiss AA, Sep. Purif. Technol., 177, 49 (2017)
  40. Aspentech, Aspen Technology, Inc., Bedford. MA (2015).
  41. Douglas JM, Conceptual design of chemical processes, McGraw-Hill, New York (1988).
  42. Kemp IC, Pinch analysis and process integration, 2nd ed., Butterworth-Heinemann, Burlington, MA (2007).
  43. Turton R, Baille RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis, Upper Saddle River, New Jersey (2003).
  44. Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31, 3083 (2006)
  45. Kim YH, Energy, 70, 435 (2014)
  46. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, National Renewable Energy Laboratory, Golden, CO (2002).
  47. Yan Q, Ma G, Wang W, J. Phys.-Conf. Ser., 2076, 012037 (2021)
  48. Sandvik, Sandvik AB, Sandviken, Sweden, (2022).
  49. Ayaz H, Chinnasamy V, Cho H, Materials, 14, 7418 (2021)
  50. Aneke M, Gorgens J, Fuel, 150, 583 (2015)
  51. Contreras-Vargas CA, Gomez-Castro FI, Sanchez-Ramirez E, Segovia-Hernandez JG, Morales-Rodriguez R, Gamino-Arroyo Z, Chem. Eng. Technol., 42, 1088 (2019)
  52. Kraemer K, Harwardt A, Bronneberg R, Marquardt W, Comput. Chem. Eng., 35, 949 (2011)