Clean Technology, Vol.28, No.4, 285-292, December, 2022
휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발
Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds
E-mail:
초록
대기 오염의 주요 원인인 휘발성유기화합물(VOCs)의 배출을 저감하기 위한 방법으로 주로 활성탄 흡착탑이 활용되고 있다. 하지만 활성탄의 짧은 수명과 잦은 교체 주기의 단점이 있어 이를 극복하기 위한 다양한 기술이 개발되고 있으며, 광촉매-활성 탄 복합체는 이러한 활성탄의 단점을 극복할 수 있는 방법임을 입증하였다. 광촉매-활성탄 복합체는 활성탄 표면에 금속산화 물 광촉매를 코팅하여 광촉매 효과와 활성탄의 흡착능력 효과를 동시에 확보할 수 있는 휘발성유기화합물 저감 물질이다. 미세유체공정을 이용하여 ZnO, 은(Ag) 나노입자를 동시에 합성한 후 실시간으로 ZnO와 은(Ag) 나노입자 용액을 활성탄이 채워진 충진층 반응기에 주입하여 Ag-ZnO 활성탄 복합체를 합성하였다. 합성 반응시간에 따른 광촉매 복합체의 증착양을 분석했으며, 다양한 분석 방법을 통해 광촉매가 활성탄의 기공을 막지 않고 활성탄 표면에 선택적으로 증착 되었음을 확인하였다. 톨루엔 가스백 시험과 흡착 파괴시간 시험을 통해 광촉매-활성탄 복합체가 순수한 활성탄보다 우수한 저감 효과와 지속성을 가지는 것을 확인하였다. 본 연구를 통해 개발된 공정은 광촉매-활성탄 복합체를 효율적으로 생산할 수 있는 방법으로 대량 생 산을 위한 스케일 업 공정을 통해 국내의 VOCs 저감 물질 가격 경쟁력을 높일 수 있을 것으로 사료된다.
Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.
Keywords:Metal oxide photocatalysis;Volatile organic compounds (VOCs);Activated carbon;Microfluidics
- Li B, Ho SSH, Li X, Guo L, Chen A, Yang Y, Chen D, Lin A, Fang X, Environ. Int., 156, 106710 (2021)
- Suzuki N, Nakaoka H, Nakayama Y, Tsumura K, Takaguchi K, Takaya K, Eguchi A, Hanazato M, Todaka E, Mori C, Sci. Total Environ., 750, 141635 (2021)
- Zhang T, Li G, Yu Y, Ji Y, An T, J. Clean Prod., 275, 122982 (2020)
- Zhang X, Gao B, Creamer AE, Cao C, Li Y, J. Hazard. Mater., 338, 102 (2017)
- Kim BR, Environ. Eng. Res., 16, 1 (2011)
- Laskar II, Hashisho Z, Phillips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 53, 2647 (2019)
- Cheng Q, Zhang GK, Tungsten, 2, 240 (2020)
- Rao Z, Lu G, Chen L, Mahmood A, Shi G, Tang Z, Xie X, Sun J, Chem. Eng. J., 430, 132766 (2022)
- Zhu L, Shen D, Luo KH, J. Hazard. Mater., 389, 122102 (2020)
- Kim J, Lee BK, Process Saf. Environ. Protect., 119, 164 (2018)
- Shah KW, Li W, Nanomaterials, 9, 910 (2019)
- Gandolfo A, Marque S, Temime-Roussel B, Gemayel R, Wortham H, Truffier-Boutry D, Bartolomei V, Gligorovski S, Environ. Sci. Technol., 52, 11328 (2018)
- Kato H, Kudo A, J. Phys. Chem. B, 106, 5029 (2002)
- Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C, Water, 12, 102 (2020)
- Raizada P, Sudhaik A, Singh P, Mater. Sci. Energy Technol., 2, 509 (2019)
- Ong CB, Ng LY, Mohammad AW, Renew. Sust. Energ. Rev., 81, 536 (2018)
- Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X, Chem. Soc. Rev., 43, 5234 (2014)
- Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32, 424 (2015)
- Li J, Zhao Y, Xia M, An H, Bai H, Wei J, Yang B, Yang G, Appl. Catal. B: Environ., 261, 118244 (2020)
- Veerakumar P, Sangili A, Saranya K, Pandikumar A, Lin CK, Chem. Eng. J., 410, 128434 (2021)
- Drmosh QA, Wajih YAA, Alade IO, Mohamedkhair AK, Qamar M, Hakeem AS, Yamani ZH, Sens. Actuators B-Chem., 338, 129851 (2021)
- Han Z, Ren L, Cui Z, Chen C, Pan H, Chen J, Appl. Catal. B: Environ., 126, 298 (2012)
- Cerrón-Calle GA, Aranda-Aguirre AJ, Luyo C, Garcia-Segura S, Alarcón H, Chemosphere, 219, 296 (2019)
- Ren C, Yang B, Wu M, Xu J, Fu Z, lv Y, Guo T, Zhao Y, Zhu C, J. Hazard. Mater., 182, 123 (2010)
- Ha LPP, Vinh THT, Thuy NTB, Thi CM, Van VP, J. Environ. Chem. Eng., 9, 105103 (2021)
- Jun HY, Chang CH, Ahn KS, Ryu SO, Choi CH, Cryst. Eng. Comm., 22, 646 (2020)
- Ko JR, Jun HY, Choi CH, Clean Technol., 27, 291 (2021)
- Hao N, Xu Z, Nie Y, Jin C, Closson AB, Zhang M, Zhang JXJ, Chem. Eng. J., 378, 122222 (2019)
- Choi CH, Chang CH, Cryst. Growth Des., 14, 4759 (2014)
- Hao N, Zhang M, Zhang JXJ, Biomater. Sci., 8, 1783 (2020)
- Mull B, Möhlmann L, Wilke O, Environments, 4, 9 (2017)