화학공학소재연구정보센터
Clean Technology, Vol.28, No.4, 278-284, December, 2022
MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성
Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites
E-mail:
초록
본 연구는 1차원의 Carbon nanotube (CNT)와 2차원의 MXene을 최적의 비율로 배합한 우수한 전기전도성과 발열특성을 가 진 저차원 복합소재 기반 면상발열체를 제안한다. CNT와 MXene을 친환경 소재인 Waterborne polyurethane (WPU)과 배합하되, MXene과 CNT의 중량비율을 3:1, 1:1, 1:3, 1:7, 1:14로 다르게 적용하고 WPU는 동일한 비율로 적용하였다. 그 결과, CNT 비율이 높을수록 면저항이 낮아지고 발열온도가 높아지는 것을 확인하였다. MXene과 CNT를 1:7, 1:14로 배합하는 경우 CNT-WPU 면상발열체보다 더 낮은 면저항과 높은 발열온도를 보여주었다. 이는 1차원 CNT와 2차원 MXene의 최적 배합으로 고밀도 네트워크가 형성되어 평평한 표면이 형성되기 때문이다. 위 우수한 전기적 특성을 가진 저차원 복합소재는 플렉서블 소자에 유용하게 활용될 것으로 기대된다.
This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.
  1. Hao L, Yi Z, Li C, Li X, Yuxiu W, Yan G, Meas. J. Int. Meas. Confed., 45(7), 1855 (2012)
  2. Lee SH, Kim SW, Park CW, Jeong HE, Ok JG, Kwak MK, Int. J. Precis. Eng. Manuf.-Green Tech., 4, 177 (2017)
  3. Xiao Z, Guo R, He X, Gan Y, Zhang J, Huang H, Zhang W, Wang B, Han Y, Xia Y, J. Electron. Mater., 51, 2652 (2022)
  4. Jeong K, Kim YH, Clean Technol., 27(2), 132 (2021)
  5. Wu SW, Chang TC, Lin YH, Chen HF, Fuh YK, Int. J. Adv. Manuf. Technol., 121, 3453 (2022)
  6. Bernard C, Goodwin Jr DG, Gu X, Celina M, Nyden M, Jacobs D, Sung L, Nguyen T, J. Coat. Technol., 17, 255 (2020)
  7. Sur SH, Lee YH, Park CC, Kim HD, Clean Technol., 24(3), 190 (2018)
  8. Tian Y, Guo N, Wang WY, Geng W, Jing LC, Wang T, Yuan XT, Zhu Z, Ma Y, Geng HZ, Sci. Rep., 11, 9891 (2021)
  9. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J, Compos. B Eng., 171, 111 (2019)
  10. Yun T, Kim H, Iqbal A, Cho YS, Lee GS, Kim MK, Kim SJ, Kim D, Gogotsi Y, Kim SO, Koo CM, Adv. Mater., 32, 1906769 (2020)
  11. Ji B, Fan S, Ma X, Hu K, Wang L, Luan C, Deng J, Cheng L, Zhang L, Carbon, 165, 150 (2020)
  12. Seredych M, Shuck CE, Pinto D, Alhabeb M, Precetti E, Deysher G, Anasori B, Kurra N, Gogotsi Y, Chem. Mater., 31, 3324 (2201)
  13. Oh HJ, Dao VD, Choi HS, Appl. Surf. Sci., 435, 7 (2018)
  14. Isa SSM, Ramli MM, Jamlos MF, Hambali NAMA, Isa MM, Kasjoo SR, Ahmad N, Nor NIM, Khalid N, Asian Conference on Chemical Sensor, Penang, Malaysia (Nov. 2015).
  15. Jo HS, An S, Lee JG, Park HG, Al-Deyab SS, Yarin AL, Yoon SS, NPG Asia Mater., 9, e347 (2017)