화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 461-472, January, 2023
Effects of process variables for NO conversion by double-layered photocatalytic mortar with TiO2 nanoparticles
E-mail:,
In this study, we prepared the double-layered photocatalytic mortar, where the top-layer has the minimum thickness of 2 mm. We investigated systematically the effects of various process variables (initial NOX concentration, TiO2 addition amount, UV-A radiation, gas flow rate and relative humidity) on photocatalytic conversion of NOX and also the transient NOX conversions for changing ambient conditions of process variables with time. The higher the nano-TiO2 concentration in the mortar or UV-A radiation intensity is, or the lower the NOX gas flow rate or relative humidity is, the higher the NOX conversion efficiency is. As the initial concentration of NOX increases, NOX conversion efficiency decreases, but the amount of NOX conversion increases. It is confirmed that the prepared photocatalytic mortar could convert NOX in the air efficiently for various conditions of process variables. NOX conversion efficiencies in transient environmental conditions were equivalent to those in fixed conditions for the same process variables. This study provides strong basic data to apply the photocatalytic mortar to convert NOX efficiently using solar energy without the use of extra energy and can be easily extended to future applications to infrastructures such as buildings, tunnels, or roads.
  1. Monteiro PJM, Miller SA, Horvath A, Nat. Mater., 16(7), 698 (2017)
  2. Oluwoye I, Dlugogorski BZ, Gore J, Oskierski HC, Altarawneh M, Atmos. Environ., 167, 81 (2017)
  3. Pope CA, Dockery DW, J. Air Waste Manag. Assoc., 56(6), 709 (2006)
  4. Normann F, Andersson K, Leckner B, Johnsson F, Prog. Energy Combust. Sci., 35(5), 385 (2009)
  5. Lasek J, Yu YH, Wu JCS, J. Photochem. Photobiol. C, 14(1), 29 (2013)
  6. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK, Angew. Chem.-Int. Edit., 52(29), 7372 (2013)
  7. Fujishima A, Zhang X, Tryk DA, Surf. Sci. Rep., 63(12), 515 (2008)
  8. Russell HS, Frederickson LB, Hertel O, Ellermann T, Jensen SS, Catalysts, 11(6), 1 (2021)
  9. Dillert R, Engel A, Große J, Lindner P, Bahnemann DW, PCCP, 15(48), 20876 (2013)
  10. Park H, Park Y, Kim W, Choi W, J. Photochem. Photobiol. C, 15(1), 1 (2013)
  11. Dalton JS, Janes P, Jones N, Hallam KR, Nicholson JA, Allen GC, Geologica, 45(1), 8 (2001)
  12. Matsuda S, Hatano H, Tsutsumi A, Ultrafine particle fluidization and its application to photocatalytic NO x treatment, 2001.
  13. Tseng YH et al., Nanotechnology, 17(10), 2490 (2006)
  14. Hamidi F, Aslani F, Nanomaterials, 9(10) (2019)
  15. Serpone N, Catalysts, 8(11), 553 (2018)
  16. Zouzelka R, Rathousky J, Appl. Catal. B: Environ., 217, 466 (2017)
  17. Bianchi CL et al., Catal. Sci. Technol., 6(7), 2261 (2016)
  18. Sikkema JK, Ong S, Alleman JE, Constr. Build. Mater., 100(X), 305 (2015)
  19. Hanus MJ, Harris AT, Prog. Mater. Sci., 58(7), 1056 (2013)
  20. de Melo JVS, Trichês G, Build. Environ., 49(1), 117 (2012)
  21. Serpone N, Catalysts, 8(11) (2018)
  22. Wang Z, Gauvin F, Feng P, Brouwers HJH, Yu Q, Constr. Build. Mater., 263, 120558 (2020)
  23. Chen C, Tang B, Cao X, Gu F, Huang W, Constr. Build. Mater., 275, 122135 (2021)
  24. ISO 2013, INTERNATIONAL STANDARD performance of semiconducting, vol. 2014, 2014.
  25. Yan M, Chen F, Zhang J, Anpo M, J. Phys. Chem. B, 109(18), 8673 (2005)
  26. Faraldos M, Kropp R, Anderson MA, Sobolev K, Catal. Today, 259, 228 (2016)
  27. Obee TN, Brown RT, Environ. Sci. Technol., 29(5), 1223 (1995)
  28. Ameen MM, Raupp GB, J. Catal., 184(1), 112 (1999)