Journal of Industrial and Engineering Chemistry, Vol.117, 442-449, January, 2023
Toward efficient broad-spectrum UV absorption of carbon dots: Facile preparation, performance characterization and its application as UV absorbers
E-mail:,
UV absorbers are sustainable substances that inhibit the ultraviolet (UV) radiative degradation of polymers. In previous reports, the as-prepared carbon dots (CDs) possess only an absorption band at UVA (320–400 nm). To achieve broad-spectrum UV absorption (200–400 nm), increasing the concentration of the CDs solution becomes common. However, a high concentration solution seriously affects the light transmittance due to its heavy yellow color. Furthermore, the promising organic UV absorbers cannot achieve broad-spectrum UV absorption. In this work, we initially synthesized three-component watersoluble carbon dots (OP–CDs), which delivers an excellent UV absorption (98 % UVA and 100 % UVB at the concentration of 1.7 X 10-2 mg/mL; 99 % transmittance in visible light). Moreover, OP–CDs exhibit outstanding stability at high temperatures and different pH. With the corporation of OP–CDs and polyvinyl alcohol (PVA), a high-performance UV-shielding film was formed, leading to enhanced broadspectrum UV shielding performance and improved mechanical properties, resistance of photocatalytic activity and anti-UV aging ability compared with pure PVA film. Notably, the PVA film remains high transparency with the addition of OP–CDs. The study suggests that the corporation of OP–CDs and polymers is effective in anti-UV degradation.
Keywords:UV absorbers;Broad-spectrum UV absorption;Stability;Mechanical properties;Photocatalytic activity;Anti-UV aging
- Zhang Y, Naebe M, ACS Sustain. Chem. Eng., 9, 1427 (2021)
- Dong L, Xiong Z, Liu X, Sheng D, Zhou Y, Yang Y, J. Appl. Polym. Sci., 136, 47555 (2019)
- Liu F, Liu A, Tao W, Yang Y, Prog. Org. Coat., 145, 105685 (2020)
- Thompson AJ, Hart-Cooper WM, Cunniffe J, Johnson K, Orts WJ, ACS Sustain. Chem. Eng., 9, 9085 (2021)
- Cohen S, Haham H, Pellach M, Margel S, ACS Appl. Mater. Interfaces, 9, 868 (2017)
- Hu G, Sun Y, Xie Y, Wu S, Zhang X, Zhuang J, et al., ACS Appl. Mater. Interfaces, 11, 6634 (2019)
- Hasani M, Mahdavian M, Yari H, Ramezanzadeh B, Prog. Org. Coat., 116, 90 (2018)
- Li Q, Liao G, Zhang S, Pang L, Tong H, Zhao W, et al., Appl. Surf. Sci., 427, 437 (2018)
- Li Q, Liao G, Tian J, Xu Z, Macromol. Mater. Eng., 303, 1700407 (2018)
- Wang Y, Li T, Ma P, Bai H, Xie Y, Chen M, et al., ACS Sustain. Chem. Eng., 4, 2252 (2016)
- Liu C, Ye X, Wang X, Liao X, Huang X, Shi B, Ind. Eng. Chem. Res., 56, 8553 (2017)
- Gomez-Hermoso-de-Mendoza J, Gutierrez J, Tercjak A, J. Phys. Chem. C, 124, 4242 (2020)
- Cai H, Shen D, Yuan L, Guan Q, Gu A, Liang G, Appl. Surf. Sci., 452, 389 (2018)
- Hu G, Xie Y, Xu X, Ye W, He Y, Jiang H, et al., J. Alloy. Compd., 886, 161120 (2021)
- Qiu J, Ye W, Xu X, Guo B, Wang R, Hu C, et al., Cryst. Growth Des., 22, 4357 (2022)
- Liao G, Gong Y, Zhang L, Gao H, Yang GJ, Fang B, Energy Environ. Sci., 12, 2080 (2019)
- Liao G, Gong Y, Zhong L, Fang J, Zhang L, Xu Z, et al., Nano Res., 12, 2407 (2019)
- Uthirakumar P, Devendiran M, Yun JM, Kim GC, Kalaiarasan S, Lee IH, Opt. Mater., 84, 771 (2018)
- Periyayya U, Khan MSR, Dao VD, Tran VH, Lee IH, RSC Adv., 5, 71968 (2015)
- Barman BK, Handegard OS, Hashimoto A, Nagao T, ACS Sustain. Chem. Eng., 9, 9879 (2021)
- Shi C, Zhang S, Wang W, Linhardt RJ, Ragauskas AJ, ACS Sustain. Chem. Eng., 8, 22 (2019)
- Zhao W, Yan L, Gu H, Li Z, Wang Y, Luo Q, et al., ACS Appl. Energy Mater., 3, 11388 (2020)
- Xia C, Zhu S, Feng T, Yang M, Yang B, Adv. Sci., 6, 1901316 (2019)
- Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, et al., Sci. Adv., 6 (2020)
- Green DC, Holden MA, Levenstein MA, Zhang S, Johnson BRG, de Pablo JG, et al., Nat. Commun., 10, 206 (2019)
- Jiang K, Wang Y, Cai C, Lin H, Chem. Mater., 29, 4866 (2017)
- Li W, Wu S, Zhang H, Zhang X, Zhuang J, Hu C, et al., Adv. Funct. Mater., 28, 1804004 (2018)
- Wu Z, Chen R, Pan S, Liu H, Hu X, Microchem J., 164, 105976 (2021)
- Yao B, Huang H, Liu Y, Kang Z, Trends Chem., 1, 235 (2019)
- Barman BK, Nagao T, Nanda KK, Appl. Surf. Sci., 510, 145405 (2020)
- Gan J, Wu Y, Yang F, Wu X, Wang Y, Wang J, ACS Appl. Nano Mater., 4, 12552 (2021)
- Barman BK, Handegard OS, Hernández-Pinilla D, Shinde SL, Nagao T, ACS Appl. Electr. Mater., 3, 3761 (2021)
- Zuo D, Liang N, Xu J, Chen D, Zhang H, Cellulose, 26, 4205 (2019)
- Hess SC, Permatasari FA, Fukazawa H, Schneider EM, Balgis R, Ogi T, et al., J. Mater. Chem. A, 5, 5187 (2017)
- Park SJ, Yang HK, Moon BK, Nano Energy, 60, 87 (2019)
- Patil AS, Waghmare RD, Pawar SP, Salunkhe ST, Kolekar GB, Sohn D, et al., J. Photochem. Photobiol. A-Chem., 400, 112647 (2020)
- Xu N, Gao S, Xu C, Fang Y, Xu L, Zhang W, Appl. Surf. Sci., 556, 149774 (2021)
- Cardillo D, Sencadas V, Devers T, Islam MM, Tehei M, Rosenfeld A, et al., Chem. Eng. J., 405, 126843 (2021)
- Qiu J, Ye W, Xu X, Congcong C, Xu Z, Lei B, et al., ACS Sustainable Chem. Eng., 10(1968), 11958 (2022)
- Zhang Y, Remadevi R, Hinestroza JP, Wang X, Naebe M, Polymer, 12, 1190 (2020)
- Fan Y, Yang X, Yin C, Ma C, Zhou X, Nanotechnology, 30 (2019)
- Bhattacharya S, Phatake RS, Barnea SN, Zerby N, Zhu JJ, Shikler R, et al., ACS Nano, 13, 1433 (2019)
- Wang Y, Jiang K, Du J, Zheng L, Li Y, Li Z, et al., Nanomicro. Lett., 13, 198 (2021)
- Loo AH, Sofer Z, Bousa D, Ulbrich P, Bonanni A, Pumera M, ACS Appl. Mater. Interfaces, 8, 1951 (2016)
- Mou Z, Wang B, Lu H, Quan H, Huang Z, Carbon, 149, 594 (2019)
- Wang B, Lu S, Matter, 5, 110 (2022)
- Sun Y, Liu J, Pang X, Zhang X, Zhuang J, Zhang H, et al., J. Mater. Chem. C, 8, 5744 (2020)
- Zhang X, Yang H, Wan Z, Su T, Zhang X, Zhuang J, et al., Adv. Opt. Mater., 8, 2000251 (2020)
- Amrollahi S, Mohseni M, Ramezanzadeh B, Prog. Org. Coat., 105, 132 (2017)
- Abd-Elrahman MI, Nanoscale Microscale Thermophys. Eng., 17, 194 (2013)