화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 434-441, January, 2023
Aging effect on the structure formation of active sites in single-atomic catalysts and their electrochemical properties for oxygen reduction reaction
E-mail:
FeANAC catalysts have attracted attention because of their superior oxygen reduction reaction (ORR) performance in alkaline media. However, there is a conflict between the active sites of FeANAC catalysts, namely single-atomic Fe–Nx sites and dual active sites consisting of atomic sites/iron carbide nanoparticles. Herein, we synthesized catalysts with different types of active sites by controlling the facile aging process. The main active sites varied from single active sites to dual active sites when the aging time and Fe content was decreased and increased. A catalyst with 0.6 wt% Fe that is aged for 24 h (FeNC-24–0.6) has dual active sites, whereas a catalyst with 0.9 wt% Fe that is aged for 48 h (FeNC-48–0.9) consists mainly of single active sites. The catalysts showed outstanding ORR activity, exceeding the half-wave potential of the commercial 20 wt% Pt/C catalysts by 11 mV. Interestingly, the FeNC-48–0.9 catalyst exhibited a rare negative shift compared to the FeNC-24–0.6 catalyst in the durability tests. Therefore, it is believed that increasing the number of single-atomic Fe–Nx sites is an effective approach to enhance the ORR performance of FeANAC catalyst in alkaline media.
  1. Momirlan M, Veziroglu TN, Renew. Sust. Energ. Rev., 6(1), 141 (2002)
  2. Felseghi RA, Carcadea E, Raboaca MS, TRUFIN CN, Filote C, Energies, 12(23), 4593 (2019)
  3. Sharma S, Ghoshal SK, Renew. Sust. Energ. Rev., 43, 1151 (2015)
  4. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR, Energy Environ. Sci., 12(2) (2019)
  5. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39(6), 2184 (2010)
  6. Morozan A, Jousselme B, Palacin S, Energy Environ. Sci., 4(4), 1238 (2011)
  7. Antolini E, J. Mater. Sci., 38(14), 2995 (2003)
  8. Shao Y, Dodelet JP, Wu G, Zelenay P, Adv. Mater., 31(31), 1807615 (2019)
  9. Du L, Prabhakaran V, Xie X, Park S, Wang Y, Shao Y, Adv. Mater., 33(6), 1908232 (2021)
  10. Spendelow JS, Wieckowski A, Phys. Chem. Chem. Phys., 9(21), 2654 (2007)
  11. Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS, J. Power Sources, 375, 170 (2018)
  12. Hossen MM, Artyushkova K, Atanassov P, Serov A, J. Power Sources, 375, 214 (2018)
  13. Zhang S, Chen M, Zhao X, Cai J, Yan W, Yen JC, Chen S, Yu Y, Zhang J, Electrochem. Energ. Rev., 4(2), 336 (2021)
  14. He Y, Liu S, Priest C, Shi Q, Wu G, Chem. Soc. Rev., 49(11), 3484 (2020)
  15. Liu M, Wang L, Zhao K, Shi S, Shao Q, Zhang L, Sun X, Zhao Y, Zhang J, Energy Environ. Sci., 12(10), 2890 (2019)
  16. Ramaswamy N, Tylus U, Jia Q, Mukerjee S, J. Am. Chem. Soc., 135(41), 15443 (2013)
  17. Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M, Electrochem. Energ. Rev., 2(2), 252 (2019)
  18. Li Q, Cao R, Cho J, Wu G, Adv. Energy Mater., 4(6), 1301415 (2014)
  19. Chen R, Li H, Chu D, Wang G, J. Phys. Chem. C, 113(48), 20689 (2009)
  20. Fierro C, Carbonio RE, Scherson D, Yeager EB, J. Phys. Chem., 91(27), 6579 (1987)
  21. Rojas-Carbonell S, Santoro C, Serov A, Atanassov P, Electrochem. Commun., 75, 38 (2017)
  22. Zhong W, Wang Z, Han S, Deng L, Yu J, Lin Y, Long X, Gu M, Yang S, Cell Reports Phys. Sci., 1(7) (2020)
  23. Ohms D, Herzog S, Franke R, Neumann V, Wiesener K, Gamburcev S, Kaisheva A, Iliev I, J. Power Sources, 38(3), 327 (1992)
  24. Pan Y, Zhang C, Liu Z, Chen C, Li Y, Matter, 2(1), 78 (2020)
  25. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y, Chem. Rev., 120(21), 11900 (2020)
  26. Chen ZW, Chen LX, Yang CC, Jiang Q, J. Mater. Chem. A, 7(8), 3492 (2019)
  27. Ye C, Zhang N, Wang D, Li Y, Chem. Commun., 56(56), 7687 (2020)
  28. Wei X, Luo X, Wang H, Gu W, Cai W, Lin Y, Zhu C, Appl. Catal. B: Environ., 263 (2020)
  29. Zhao L, Zhang Y, Huang LB, Liu XZ, Zhang QH, He C, Wu ZY, Zhang LJ, Wu J, Yang W, Gu L, Hu JS, Wan L, Nat. Commun., 10(1) (2019)
  30. Wang Y, Li J, Wei Z, ChemElectroChem, 5(14), 1764 (2018)
  31. Kramm UI, Herranz J, Larouche N, Arruda TM, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet JP, Phys. Chem. Chem. Phys., 14(33), 11673 (2012)
  32. Yuan K, Sfaelou S, Qiu M, Lützenkirchen-Hecht D, Zhuang X, Chen Y, Yuan C, Feng X, Scherf U, ACS Energy Letters, 3(1), 252 (2018)
  33. Zhang P, Chen C, Zhang X, Jiang Z, Huang J, Chen J, Electrochim. Acta, 398, 570 (2019)
  34. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y, J. Am. Chem. Soc., 139(48), 17281 (2017)
  35. Kang GS, Jang JH, Son SY, Lee CH, Lee YK, Lee DC, Yoo SJ, Lee S, Joh HI, J. Mater. Chem. A, 8(42), 22379 (2020)
  36. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei Z, Wan LJ, J. Am. Chem. Soc., 138(10), 3570 (2016)
  37. Malko D, Kucernak A, Lopes T, Nat. Commun., 7(1), 13285 (2016)
  38. Abbasi Z, Shamsaei E, Leong SK, Ladewig B, Zhang X, Wang H, Microporous Mesoporous Mater., 236, 28 (2016)
  39. Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L, J. Am. Chem. Soc., 140(37), 11594 (2018)
  40. Kang GS, Jang JH, Son SY, Lee YK, Lee DC, Yoo SJ, Lee S, Joh HI, J. Power Sources, 520 (2022)
  41. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S, ACS Nano, 9(12), 12496 (2015)
  42. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y, Nat. Catal., 1(1), 63 (2018)
  43. Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P, J. Electrochem. Soc., 158(1), B69 (2011)
  44. He Q, Meng Y, Zhang H, Zhang Y, Sun Q, Gan T, Xiao H, He X, Ji H, Science China Chem., 63(6), 810 (2020)
  45. Artyushkova K, Kiefer B, Halevi B, Knop-Gericke A, Schlogl R, Atanassov P, Chem. Commun., 49(25), 2539 (2013)