화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 273-281, January, 2023
Local Joule heating targets catalyst surface for hydrocarbon combustion
E-mail:, ,
Most industrial catalytic reactions are achieved by external heating and catalysts are entirely heated to offer enough thermal energy to surface active sites. However, there is an inherent drawback that most input energy is dissipated into the bulk while minor is donated to the surface, leading to high energy waste. Here, we proposed a so-called local Joule heating method via passing an electric current through packed catalyst nanoparticles with a large contact resistance, which can generate sufficient heat to target at the surface region. We selected hydrocarbon combustion, a common way to eliminate unburned pollutants, as a probe reaction and used the conductive antimony-doped tin oxide (ATO) as a model catalyst. Compared with traditional external heating, this method consumed one order lower energy input, reduced the macroscopically average temperature for same conversion by ~100 ℃, improved the durability with smaller activity loss within 100 h operation, and suppressed water poisoning effect by ~60 %. Also, the combustion was sparked in seconds by pulsing electric current into the catalyst bed, allowing an application in prompt treatment of leaked hydrocarbons. The local Joule heating between contacted nanoparticles, which could focus thermal energy on catalyst surface, is prospective to improve catalysis efficiency.
  1. Ertl G, Angew. Chem.-Int. Edit., 47(19), 3524 (2008)
  2. Li J, Lu X, Wu F, Qin S, You Z, Chem. Eng. J., 328, 1058 (2017)
  3. Wismann ST, Engbaek JS, Vendelbo SB, Bendixen FB, Eriksen WL, Aasberg-Petersen K, et al., Science, 364(6442), 756 (2019)
  4. Li J, Lu X, Wu F, Cheng W, Zhang W, Qin S, et al., Ind. Eng. Chem. Res., 56(44), 12520 (2017)
  5. Badakhsh A, Kwak Y, Lee YJ, Jeong H, Kim Y, Sohn H, et al., Chem. Eng. J., 426, 130802 (2021)
  6. Dou LG, Yan CJ, Zhong LS, Zhang D, Zhang JY, Li X, et al., Chem. Commun., 56(2), 205 (2020)
  7. Zou N, Nie Q, Zhang X, Zhang G, Wang J, Zhang P, Chem. Eng. J., 357, 1 (2019)
  8. Wang K, Zeng Y, Lin W, Yang X, Cao Y, Wang H, et al., Carbon, 167, 709 (2020)
  9. Holm R, The relationship between electric potential and temperature in a current constriction which is symmetric with respect to the contact surface, Heidelberg, pp. 60-64, 1967.
  10. Deng SH, Fischer G, Srichandan S, Wang LL, Wang C, Surgers C, Adv. Electron. Mater., 4(9), 1800028 (2018)
  11. Grosse KL, Bae MH, Lian F, Pop E, King WP, Nat. Nanotechnol., 6(5), 287 (2011)
  12. Luong DX, Bets KV, Algozeeb WA, Stanford MG, Kittrell C, Chen W, et al., Nature, 577(7792), 647 (2020)
  13. Romanov SA, Alekseeva AA, Khabushev EM, Krasnikov DV, Nasibulin AG, Carbon, 168, 193 (2020)
  14. Chawake N, Pinto LD, Srivastav AK, Akkiraju K, Murty BS, Kottada RS, Scr. Mater., 93, 52 (2014)
  15. Becker MZ, Shomrat N, Tsur Y, Adv. Mater., 30(41), 1706363 (2018)
  16. Mao W, Xiong B, Li Q, Zhou Y, Yin C, Liu Y, et al., Phys. Lett. A, 379(36), 1946 (2015)
  17. Mei X, Zhu X, Zhang Y, Zhang Z, Zhong Z, Xin Y, et al., Nat. Catal., 4, 1002 (2021)
  18. Forni L, Rossetti I, Appl. Catal. B: Environ., 38(1), 29 (2002)
  19. Li Y, Liu J, Liang J, Yu X, Li D, ACS Appl. Mater. Interfaces, 7(12), 6574 (2015)
  20. Morad V, Yakunin S, Benin BM, Shynkarenko Y, Grotevent MJ, Shorubalko I, et al., Adv. Mater., 33(9), 2007355 (2021)
  21. Zhang T, Lang X, Dong A, Wan X, Gao S, Wang L, et al., ACS Catal., 10(13), 7269 (2020)
  22. Huang W, Zhang X, Yang AC, Goodman ED, Kao KC, Cargnello M, ACS Catal., 10(15), 8157 (2020)
  23. Ciuparu D, Altman E, Pfefferle L, J. Catal., 203(1), 64 (2001)
  24. Hajar YM, Boreave A, Caravaca A, Vernoux P, Baranova EA, ChemCatChem, 12(9), 2548 (2020)
  25. Murata K, Ohyama J, Yamamoto Y, Arai S, Satsuma A, ACS Catal., 10(15), 8149 (2020)