화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 220-226, January, 2023
Development of a lithium-oxygen battery with an improved redox mediator applicable to gel polymer electrolytes
E-mail:
Lithium-oxygen batteries (LOBs) are next-generation electrochemical power sources with significantly high capacities and energy densities. In particular, Li2O2 produced during charging exhibits a low electrical conductivity and insolubility, which leads to low energy efficiency in LOBs. Thus, various catalysts are studied to solve essential problems such as the sluggish decomposition rate of Li2O2. In this study, a redox polymeric catalyst (RPC-FePc) is fabricated on an air electrode by combining iron(Ⅱ) phthalocyanine (FePc) as the redox mediator and polyvinylidene fluoride as the binder. The RPC-FePc applied to liquid electrolyte- and gel polymer electrolyte-based LOBs exhibit improved electrochemical properties, that is, increased cycling efficiencies and a reduced IR drop, compared to an RPC-free LOB.
  1. Scrosati B, Hassoun J, Sun YK, Energy Environ. Sci., 4(9) (2011)
  2. Abraham K, Jiang Z, J. Electrochem. Soc., 143(1), 1 (1996)
  3. Hartmann P, Bender CL, Vracar M, Durr AK, Garsuch A, Janek J, et al., Nat. Mater., 12(3), 228 (2013)
  4. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, et al., Angew. Chem.-Int. Edit., 51(40), 9994 (2012)
  5. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, et al., J. Electrochem. Soc., 159(2), R1 (2011)
  6. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W, J. Phys. Chem. Lett., 1(14), 2193 (2010)
  7. Zhang T, Imanishi N, Takeda Y, Yamamoto O, Chem. Lett., 40(7), 668 (2011)
  8. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM, Nat. Mater., 11(1), 19 (2011)
  9. Luo WB, Gao XW, Chou SL, Kang YM, Wang JZ, Liu HK, et al., Adv. Energy Mater., 7(24) (2017)
  10. Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, et al., Adv. Mater., 27(5), 784 (2015)
  11. Xu S, Yao Y, Guo Y, Zeng X, Lacey SD, Song H, et al., Adv. Mater., 30(4) (2018)
  12. Debart A, Paterson AJ, Bao J, Bruce PG, Angew. Chem.-Int. Edit., 47(24), 4521 (2008)
  13. Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM, J. Electrochem. Soc., 160(2), A259 (2012)
  14. Hummelshoj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, et al., J. Chem. Phys., 132(7) (2010)
  15. Lu YC, Gasteiger HA, Shao-Horn Y, J. Am. Chem. Soc., 133(47), 19048 (2011)
  16. Shao Y, Park S, Xiao J, Zhang JG, Wang Y, Liu J, ACS Catal., 2(5), 844 (2012)
  17. Black R, Adams B, Nazar LF, Adv. Energy Mater., 2(7), 801 (2012)
  18. Jeong YS, Park JB, Jung HG, Kim J, Luo X, Lu J, et al., Nano Lett., 15(7), 4261 (2015)
  19. Albertus P, Girishkumar G, McCloskey B, Sánchez-Carrera RS, Kozinsky B, Christensen J, et al., J. Electrochem. Soc., 158(3) (2011)
  20. Lau S, Archer LA, Nano Lett., 15(9), 5995 (2015)
  21. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC, J. Am. Chem. Soc., 133(45), 18038 (2011)
  22. Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, et al., J. Phys. Chem. C, 116(39), 20800 (2012)
  23. Lee JH, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, et al., Energy Environ. Sci., 5(11) (2012)
  24. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y, Energy Environ. Sci., 4(8) (2011)
  25. Oh SH, Nazar LF, Adv. Energy Mater., 2(7), 903 (2012)
  26. Bergner BJ, Schurmann A, Peppler K, Garsuch A, Janek J, J. Am. Chem. Soc., 136(42), 15054 (2014)
  27. Park JB, Lee SH, Jung HG, Aurbach D, Sun YK, Adv. Mater., 30(1) (2018)
  28. Sun D, Shen Y, Zhang W, Yu L, Yi Z, Yin W, et al., J. Am. Chem. Soc., 136(25), 8941 (2014)
  29. Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, et al., Angew. Chem.-Int. Edit., 53(15), 3926 (2014)
  30. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG, Nat. Chem., 5(6), 489 (2013)
  31. Jerng SE, Kim TY, Bae S, Shin J, Park J, Yi J, et al., Energy Storage Mater, 19, 16 (2019)
  32. Kwak WJ, Hirshberg D, Sharon D, Afri M, Frimer AA, Jung HG, et al., Energy Environ. Sci., 9(7), 2334 (2016)
  33. Kwak WJ, Hirshberg D, Sharon D, Shin HJ, Afri M, Park JB, et al., J. Mater. Chem. A, 3(16), 8855 (2015)
  34. Torres WR, Davia F, del Pozo M, Tesio AY, Calvo EJ, J. Electrochem. Soc., 164(14), A3785 (2017)
  35. Chen K, Liu K, An P, Li H, Lin Y, Hu J, et al., Nat. Commun., 11(1), 4173 (2020)
  36. Adams BD, Black R, Radtke C, Williams Z, Mehdi BL, Browning ND, et al., ACS nano, 8(12), 12483 (2014)
  37. Kim BG, Jo C, Shin J, Mun Y, Lee J, Choi JW, ACS Nano, 11(2), 1736 (2017)
  38. Zhang T, Liao K, He P, Zhou H, Energy Environ. Sci., 9(3), 1024 (2016)
  39. Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schroder D, Janek J, ACS Appl Mater Interfaces, 8(12), 7756 (2016)
  40. Park Y, Choi H, Kim MC, Tran NAT, Cho Y, Sohn JI, et al., J. Ind. Eng. Chem., 94, 384 (2021)
  41. Kim MC, Choi S, Kim H, Han SB, Moon SH, Kim ES, et al., J. Power Sources, 453, 227850 (2020)
  42. Cai X, Lei T, Sun D, Lin L, RSC Advances, 7(25), 15382 (2017)
  43. Li B, Xu C, Zheng J, Xu C, Sensors, 14(6), 9889 (2014)
  44. Elashmawi IS, Abdelrazek EM, Ragab HM, Hakeem NA, Physica B, 405(1), 94 (2010)
  45. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC, Appl. Surf. Sci., 257(7), 2717 (2011)
  46. Irisa K, Hatakeyama K, Yoshimoto S, Koinuma M, Ida S, RSC Adv., 11(26), 15927 (2021)
  47. Kumar A, Zhang Y, Jia Y, Liu W, Sun X, Chin. J. Catal., 42(8), 1404 (2021)
  48. Kumar A, Yasin G, Tabish M, Das DK, Ajmal S, Nadda AK, et al., Chem. Eng. J., 445, 136784 (2022)
  49. Chen Z, Jiang S, Kang G, Nguyen D, Schatz GC, Van Duyne RP, J. Am. Chem. Soc., 141(39), 15684 (2019)
  50. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshoj JS, et al., J. Phys. Chem. Lett., 3(8), 997 (2012)
  51. McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, et al., J. Phys. Chem. Lett., 3(20), 3043 (2012)
  52. Gupta S, Fierro C, Yeager E, J. Electroanal. Chem., 306(1-2), 239 (1991)
  53. Yu W, Yang W, Liu R, Qin L, Lei Y, Liu L, et al., Electrochem. Commun., 79, 68 (2017)
  54. Yang W, Li F, Liu H, Li Z, Zhao J, Wang Y, New J. Chem., 45(45), 21160 (2021)
  55. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Barde F, Bruce PG, Angew. Chem.-Int. Edit., 50(37), 8609 (2011)
  56. Cao D, Yu F, Chen Y, Gao X, Energy Environ. Mater., 4(2), 201 (2021)
  57. Wang J, Ma L, Xu J, Xu Y, Sun K, Peng Z, SusMat, 1(3), 345 (2021)
  58. Ryu WH, Yoon TH, Song SH, Jeon S, Park YJ, Kim ID, Nano Lett., 13(9), 4190 (2013)
  59. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H, Electrochemistry, 78(5), 403 (2010)
  60. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F, et al., J. Am. Chem. Soc., 133(220), 8040 (2011)
  61. Peng X, Wang C, Liu Y, Fang W, Zhu Y, Fu L, et al., Energy Mater., 1(2) (2022)
  62. Castillo J, Qiao L, Santiago A, Judez X, de Buruaga AS, Jimenez G, et al., Energy Mater. (2022)
  63. Xu SM, Zhu QC, Long J, Wang HH, Xie XF, Wang KX, et al., Adv. Funct. Mater., 26(9), 1365 (2016)
  64. Zhang Z, Bao J, He C, Chen Y, Wei J, Zhou Z, Adv. Funct. Mater., 24(43), 6826 (2014)
  65. Kim Y, Koo D, Ha S, Jung SC, Yim T, Kim H, et al., ACS Nano, 12(5), 4419 (2018)
  66. Meethong N, Huang HYS, Speakman SA, Carter WC, Chiang YM, Adv. Funct. Mater., 17(7), 1115 (2007)
  67. Delacourt C, Ati M, Tarascon JM, J. Electrochem. Soc., 158(6), A741 (2011)
  68. Weppner W, Huggins RA, Ann. Rev. Mater. Sci., 8(1), 269 (1978)
  69. Stephan AM, Eur. Polym. J., 42(1), 21 (2006)
  70. Ito Y, Kanehori K, Miyauchi K, Kudo T, J. Mater. Sci., 22(5), 1845 (1987)
  71. Borodin O, Smith GD, Macromolecules, 39(4), 1620 (2006)
  72. Fan LZ, Maier J, Electrochem. Commun., 8(11), 1753 (2006)
  73. Wu XL, Xin S, Seo HH, Kim J, Guo YG, Lee JS, Solid State Ion., 186(1), 1 (2011)