화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.117, 196-204, January, 2023
Synthesis of poly(3,4-ethylenedioxythuophene) derivatives using three-armed conjugated cross-linker and its thermoelectric properties
E-mail:
Conducting polymer based thermoelectric systems are very effective at harvesting electricity from waste heat with low-temperature gradients relative to environmental temperature. However, although various studies concerning the doping effect exist, there are insufficient reports on the effect of the change in polymer chain structure on the thermoelectric properties. Here we demonstrate different poly(3,4-ethylene dioxythiophene) (PEDOT)-derivative chain structures (such as linear, two-dimensional, co-polymer), by varying the amount of three-armed conjugated cross-linker (1,3,5-tri(2-thienyl)-benzene (TTB)). At a small amount of TTB addition (until 0.5 mM), the electrochemical charge transport of the PEDOT films increased without shift of the UV–Vis absorbing property. However, from higher than 0.5 mM TTB, electrochemical charge transport decreased with blue shift of the UV–Vis absorbing curve. Moreover, the power factor of the PEDOT-derivative films without TTB to a small amount of TTB (0.5 mM) was improved from (27.03 to 49.43) µW m-1 K-2, and at higher than 0.5 mM TTB concentration, was diminished, respectively, because a small amount of TTB enhanced the π-π interaction of the polymer chains without disrupting the conjugation, while excess TTB molecules blocked conjugation of the polymer.
  1. Jang J, Adv. Polym. Sci., 199, 189 (2006)
  2. Karki A, Cincotti G, Chen S, Stanishev V, Darakchieva V, Wang C, et al., Adv. Mater., 34, 2107172 (2022)
  3. Green R, Abidian MR, Adv. Mater., 27, 7620 (2015)
  4. Yun TG, Bae J, Nam HG, Kim D, Yoon KR, Han SM, et al., Nano Energy, 94, 106946 (2022)
  5. Liu W, Lei Z, Yang R, Xing W, Tao P, Shang W, et al., ACS Appl. Mater. Interfaces, 14, 10605 (2022)
  6. Glaudell AM, Cochran JE, Patel SN, Chabinyc ML, Adv. Energy. Mater., 5, 1401072 (2015)
  7. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA, Nat. Rev. Mater., 1, 16050 (2016)
  8. Xu K, Ruoko TP, Shokrani M, Scheunemann D, Abdalla H, Sun H, et al., Adv. Funct. Mater., 32, 2112276 (2022)
  9. Taylor PL, Phys. Rev. B, 7, 1197 (1973)
  10. Rastegaralam M, Rastegaralam M, J. Phys. Chem. B, 125, 9910 (2021)
  11. Ramu AT, Mages P, Zhang C, Imamura JT, Bowers JE, Rev. Sci. Instrum., 83 (2012)
  12. Yan H, Sada N, Toshima N, J. Therm. Anal. Calorim., 69, 881 (2002)
  13. Jiang FX, Xu JK, Lu BY, Xie Y, Huang RJ, Li LF, Chin. Phys. Lett., 25, 2202 (2008)
  14. Moses D, Denenstein A, Phys. Rev. B, 30, 2090 (1984)
  15. Xu S, Hong M, Shi XL, Wang Y, Ge L, Bai Y, et al., Chem. Mater., 31, 5238 (2019)
  16. Perrot S, Pawula F, Pechev S, Hadziioannou G, Fleury G, J. Mater. Chem. C, 9, 7417 (2021)
  17. Serrano-Claumarchirant JF, Igual-Muñoz AM, Culebras M, Collins MN, Cantarero A, Gómez CM, Adv. Mater. Interfaces, 8, 2100951 (2021)
  18. Horike S, Wei Q, Kirihara K, Mukaida M, Koshiba Y, Ishida K, J. Mater. Chem. C, 9, 15813 (2021)
  19. Park T, Park C, Kim B, Shin H, Kim E, Energy Environ. Sci., 6, 788 (2013)
  20. Luo J, Billep D, Waechtler T, Otto T, Toader M, Gordan O, et al., J. Mater. Chem. A, 1, 7576 (2013)
  21. Fan Z, Ouyang J, Adv. Electon. Mater., 5, 1800769 (2019)
  22. Wang J, Cai K, Shen S, Org. Electron. physics, Mater. Appl., 17, 151 (2015)
  23. Khan ZU, Bubnova O, Jafari MJ, Brooke R, Liu X, Gabrielsson R, et al., J. Mater. Chem. C, 3, 10616 (2015)
  24. Kim B, Cho C, Han M, Attias AJ, Kim E, Adv. Funct. Mater., 31, 2105297 (2021)
  25. Badre C, Marquant L, Alsayed AM, Hough LA, Adv. Funct. Mater., 22, 2723 (2012)
  26. Roncali J, Leriche P, Cravino A, Adv. Mater., 19, 2045 (2007)
  27. Wang F, Rauh RD, Rose TL, J. Am. Chem. Soc., 119, 11106 (1997)
  28. Thallapally PK, Chakraborty K, Carrell HL, Kotha S, Desiraju GR, Tetrahedron, 56, 6721 (2000)
  29. Rebourt E, Pépin-Donat B, Dinh E, Polymer, 36, 399 (1995)
  30. Kotha S, Chakraborty K, Brahmachary E, Syn. Lett., 1999, 1621 (1999)
  31. Fuks-Janczarek I, Nunzi JM, Sahraoui B, Kityk IV, Berdowski J, Caminade AM, et al., Opt. Commun., 209, 461 (2002)
  32. Gu C, Huang N, Chen Y, Qin L, Xu H, Zhang S, et al., Angew. Chem.-Int. Edit., 54, 13594 (2015)
  33. Clark DT, Adams DB, Dilks A, Peeling J, Thomas HR, J. Electron Spectrosc. Relat. Phenom., 8, 51 (1976)
  34. Morea G, Sabbatini L, West RH, Vickerman JC, Surf. Interface Anal., 18, 421 (1992)
  35. Ho HA, Boissinot M, Bergeron MG, Corbeil G, Dore K, Boudreau D, et al., Angew. Chem.-Int. Edit., 41, 1548 (2002)
  36. Leclerc M, Adv. Mater., 11, 1491 (1999)
  37. Ponomarenko SA, Kirchmeyer S, Elschner A, Huisman BH, Karbach A, Drechsler D, Adv. Funct. Mater., 13, 591 (2003)
  38. Thomas MA, Cui JB, J. Electrochem. Soc., 160, D218 (2013)
  39. Ye G, Xu J, Ma X, Zhou Q, Li D, Zuo Y, et al., Electrochim. Acta, 224, 125 (2017)
  40. Ming S, Zhen S, Lin K, Zhao L, Xu J, Lu B, et al., J. Electron. Mater., 44, 1606 (2015)
  41. Patel SN, Glaudell AM, Kiefer D, Chabinyc ML, ACS Macro Lett., 5, 268 (2016)
  42. Yemata TA, Zheng Y, Kyaw AKK, Wang X, Song J, Chin WS, et al., RSC Adv., 10, 1786 (2020)
  43. Paulraj I, Liang TF, Yang TS, Wang CH, Chen JL, Wang YW, et al., ACS Appl. Energy Mater., 3, 12447 (2020)
  44. El-Shamy AG, Mater. Chem. Phys., 257, 123762 (2021)